論文の概要: Adapting Noise to Data: Generative Flows from 1D Processes
- arxiv url: http://arxiv.org/abs/2510.12636v2
- Date: Thu, 16 Oct 2025 15:52:49 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-17 18:56:32.564637
- Title: Adapting Noise to Data: Generative Flows from 1D Processes
- Title(参考訳): データへのノイズ適応:1次元プロセスからの生成フロー
- Authors: Jannis Chemseddine, Gregor Kornhardt, Richard Duong, Gabriele Steidl,
- Abstract要約: 一次元の雑音発生過程を用いて生成モデルを構築するための一般的なフレームワークを提案する。
このアプローチの柔軟性を示す例を概説する。
そこで本研究では,データに適応する量子関数を用いて雑音分布をパラメータ化することにより,その1Dプロセス自体が学習可能な新しいフレームワークを提案する。
- 参考スコア(独自算出の注目度): 7.1747343065587
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce a general framework for constructing generative models using one-dimensional noising processes. Beyond diffusion processes, we outline examples that demonstrate the flexibility of our approach. Motivated by this, we propose a novel framework in which the 1D processes themselves are learnable, achieved by parameterizing the noise distribution through quantile functions that adapt to the data. Our construction integrates seamlessly with standard objectives, including Flow Matching and consistency models. Learning quantile-based noise naturally captures heavy tails and compact supports when present. Numerical experiments highlight both the flexibility and the effectiveness of our method.
- Abstract(参考訳): 一次元の雑音発生過程を用いて生成モデルを構築するための一般的なフレームワークを提案する。
拡散プロセス以外にも、我々のアプローチの柔軟性を示す例を概説する。
そこで本研究では,データに適応する量子関数を用いて雑音分布をパラメータ化することにより,その1Dプロセス自体が学習可能な新しいフレームワークを提案する。
私たちの構造は、フローマッチングや一貫性モデルなど、標準的な目的とシームレスに統合されます。
量子的ノイズを学習することは、自然に重い尾とコンパクトなサポートをキャプチャする。
数値実験は,本手法の柔軟性と有効性の両方を強調した。
関連論文リスト
- DiffMoE: Dynamic Token Selection for Scalable Diffusion Transformers [86.5541501589166]
DiffMoEはバッチレベルのグローバルトークンプールで、トレーニング中に専門家がグローバルトークンの配布にアクセスできるようにする。
ImageNetベンチマークの拡散モデル間での最先端のパフォーマンスを実現する。
このアプローチの有効性は、クラス条件生成を超えて、テキスト・ツー・イメージ生成のようなより困難なタスクにも及んでいる。
論文 参考訳(メタデータ) (2025-03-18T17:57:07Z) - Beyond Fixed Horizons: A Theoretical Framework for Adaptive Denoising Diffusions [1.9116784879310031]
本稿では, ノイズ発生過程とノイズ発生過程の両方において, 時間均質な構造を実現する新しい生成拡散モデルを提案する。
モデルの主な特徴は、ターゲットデータへの適応性であり、事前訓練された無条件生成モデルを使用して、様々な下流タスクを可能にする。
論文 参考訳(メタデータ) (2025-01-31T18:23:27Z) - Merging Models on the Fly Without Retraining: A Sequential Approach to Scalable Continual Model Merging [75.93960998357812]
ディープモデルマージ(Deep Modelmerging)は、複数の微調整モデルを組み合わせて、さまざまなタスクやドメインにまたがる能力を活用する、新たな研究方向を示すものだ。
現在のモデルマージ技術は、全ての利用可能なモデルを同時にマージすることに集中しており、重量行列に基づく手法が主要なアプローチである。
本稿では,モデルを逐次処理するトレーニングフリーなプロジェクションベース連続マージ手法を提案する。
論文 参考訳(メタデータ) (2025-01-16T13:17:24Z) - Stochastic Control for Fine-tuning Diffusion Models: Optimality, Regularity, and Convergence [19.484676783876306]
拡散モデルは生成モデリングの強力なツールとして登場してきた。
微調整拡散モデルのための制御フレームワークを提案する。
PI-FTは線形速度で大域収束することを示す。
論文 参考訳(メタデータ) (2024-12-24T04:55:46Z) - GUD: Generation with Unified Diffusion [40.64742332352373]
拡散生成モデルは、データサンプルにノイズを徐々に付加するプロセスを反転させることで、ノイズをデータに変換する。
設計自由度を大幅に向上した拡散生成モデル統合フレームワークを開発した。
論文 参考訳(メタデータ) (2024-10-03T16:51:14Z) - Language Rectified Flow: Advancing Diffusion Language Generation with Probabilistic Flows [53.31856123113228]
本稿では,言語認識フロー (ours) を提案する。
本手法は, 標準確率流モデルの再構成に基づく。
実験およびアブレーション実験により,本手法は多くのNLPタスクに対して汎用的,効果的,有益であることが示されている。
論文 参考訳(メタデータ) (2024-03-25T17:58:22Z) - Diffusion Generative Flow Samplers: Improving learning signals through
partial trajectory optimization [87.21285093582446]
Diffusion Generative Flow Samplers (DGFS) はサンプルベースのフレームワークであり、学習プロセスを短い部分的軌道セグメントに分解することができる。
生成フローネットワーク(GFlowNets)のための理論から着想を得た。
論文 参考訳(メタデータ) (2023-10-04T09:39:05Z) - Learning Dynamics from Noisy Measurements using Deep Learning with a
Runge-Kutta Constraint [9.36739413306697]
そこで本研究では,雑音と疎サンプルを用いた微分方程式の学習手法について論じる。
我々の方法論では、ディープニューラルネットワークと古典的な数値積分法の統合において、大きな革新が見られる。
論文 参考訳(メタデータ) (2021-09-23T15:43:45Z) - Set Based Stochastic Subsampling [85.5331107565578]
本稿では,2段階間ニューラルサブサンプリングモデルを提案する。
画像分類,画像再構成,機能再構築,少数ショット分類など,様々なタスクにおいて,低いサブサンプリング率で関連ベースラインを上回っていることを示す。
論文 参考訳(メタデータ) (2020-06-25T07:36:47Z) - Modeling Continuous Stochastic Processes with Dynamic Normalizing Flows [40.9137348900942]
ウィナー過程の微分変形によって駆動される新しいタイプの流れを提案する。
その結果,観測可能なプロセスが基本プロセスの魅力的な特性の多くを継承するリッチ時系列モデルが得られた。
論文 参考訳(メタデータ) (2020-02-24T20:13:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。