論文の概要: OPLoRA: Orthogonal Projection LoRA Prevents Catastrophic Forgetting during Parameter-Efficient Fine-Tuning
- arxiv url: http://arxiv.org/abs/2510.13003v1
- Date: Tue, 14 Oct 2025 21:35:57 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-16 20:13:28.430436
- Title: OPLoRA: Orthogonal Projection LoRA Prevents Catastrophic Forgetting during Parameter-Efficient Fine-Tuning
- Title(参考訳): OPLoRA:orthogonal projection LoRAはパラメータ効率の良いファインチューニング時の破滅的形成を予防する
- Authors: Yifeng Xiong, Xiaohui Xie,
- Abstract要約: Low-Rank Adaptation (LoRA)は、大規模言語モデルの効率的な微調整を可能にする。
LoRAは、学習した更新が支配的な特異な方向に干渉するとき、破滅的な忘れ込みに苦しむ。
我々はこの干渉を防止するために直交射影LORAを提案する。
- 参考スコア(独自算出の注目度): 19.425615290786386
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Low-Rank Adaptation (LoRA) enables efficient fine-tuning of large language models but suffers from catastrophic forgetting when learned updates interfere with the dominant singular directions that encode essential pre-trained knowledge. We propose Orthogonal Projection LoRA (OPLoRA), a theoretically grounded approach that prevents this interference through double-sided orthogonal projections. By decomposing frozen weights via SVD, OPLoRA constrains LoRA updates to lie entirely within the orthogonal complement of the top-$k$ singular subspace using projections $P_L = I - U_k U_k^\top$ and $P_R = I - V_k V_k^\top$. We prove that this construction exactly preserves the top-$k$ singular triples, providing mathematical guarantees for knowledge retention. To quantify subspace interference, we introduce $\rho_k$, a metric measuring update alignment with dominant directions. Extensive experiments across commonsense reasoning, mathematics, and code generation demonstrate that OPLoRA significantly reduces forgetting while maintaining competitive task-specific performance on LLaMA-2 7B and Qwen2.5 7B, establishing orthogonal projection as an effective mechanism for knowledge preservation in parameter-efficient fine-tuning.
- Abstract(参考訳): Low-Rank Adaptation (LoRA)は、大きな言語モデルの効率的な微調整を可能にするが、学習された更新が必須の事前訓練された知識を符号化する支配的な特異な方向に干渉した場合、破滅的な忘れを被る。
直交射影法(OPLoRA)は,両面の直交射影による干渉を防止する理論的なアプローチである。
P_L = I - U_k U_k^\top$ と $P_R = I - V_k V_k^\top$ を射影とする。
この構成は、k$の特異三重項を正確に保存し、知識保持の数学的保証を提供する。
部分空間干渉の定量化のために,主方向の更新アライメントを測定する計量値である$\rho_k$を導入する。
LLaMA-2 7B と Qwen2.5 7B での競合タスク固有の性能を維持しながら、OPLoRA は、パラメータ効率の良い微調整における知識保存の効果的なメカニズムとして直交射影を確立することで、コモンセンス推論、数学、コード生成の広範な実験により、忘れを著しく減少させることを示した。
関連論文リスト
- Faster Than SVD, Smarter Than SGD: The OPLoRA Alternating Update [50.36542772932594]
Low-Rank Adaptation (LoRA) は、凍結重量の上の低ランク更新を学習することで、大きなモデルを微調整する。
ローランクプロジェクションによる完全なトレーニング(SVDLoRA)とLoRAファインチューニングの間にはまだギャップがあり、LoRAのステップをさらに改善できることを示している。
論文 参考訳(メタデータ) (2025-09-24T10:32:50Z) - Uni-LoRA: One Vector is All You Need [13.938834666101679]
Low-Rank Adaptation (LoRA) は、大規模言語モデルのための事実上のパラメータ効率の微調整(PEFT)手法となっている。
本稿では,これらの LoRA 変種が用いたパラメータ空間削減戦略を統一的な枠組みで定式化できることを示す。
Uni-LoRAの統一的なビューの下では、LLM全体のLoRAパラメータを再構築するためには、単一のトレーニング可能なベクトルしか必要としない。
論文 参考訳(メタデータ) (2025-06-01T03:00:09Z) - LoRA vs Full Fine-tuning: An Illusion of Equivalence [76.11938177294178]
我々は,Low-Rank Adaptation (LoRA) とフルファインタニングによる事前学習モデルについて検討する。
特異値分解が全く異なる構造を示すLoRAおよび完全微調整収量行列が得られた。
我々は、LoRAが完全な微調整を忘れてはならないという発見を拡張し、その忘れ物は侵入者次元に大きく局所化されていることを発見した。
論文 参考訳(メタデータ) (2024-10-28T17:14:01Z) - Randomized Asymmetric Chain of LoRA: The First Meaningful Theoretical Framework for Low-Rank Adaptation [58.288682735160585]
Low-Rank Adaptation (LoRA) は、ファインチューニングモデルの一般的なテクニックである。
LoRAは、フルパラメータの微調整と比較すると、しばしば実行されます。
本稿では,LoRA手法の適応率を厳密に分析するフレームワークを提案する。
論文 参考訳(メタデータ) (2024-10-10T18:51:53Z) - Flat-LoRA: Low-Rank Adaptation over a Flat Loss Landscape [52.98187034726091]
フルパラメータ空間の平坦領域に位置する低ランク適応を同定することを目的としたFlat-LoRAを提案する。
また、Flat-LoRAはドメイン内とドメイン外の両方の一般化を改善していることを示す。
論文 参考訳(メタデータ) (2024-09-22T11:24:10Z) - CoRA: Optimizing Low-Rank Adaptation with Common Subspace of Large Language Models [7.108651381160281]
Low-Rank Adaptation (LoRA) 戦略は、微調整された大型モデルにおける効率と性能のバランスをとる。
我々は、共有知識を活用してLoRAトレーニングを最適化するtextbfCoRAを提案する。
実験の結果,最初のアプローチは,パラメータの半減よりも効率が良く,元のLoRAファインチューニングと同じ効果が得られることがわかった。
論文 参考訳(メタデータ) (2024-08-31T12:48:27Z) - SBoRA: Low-Rank Adaptation with Regional Weight Updates [19.15481369459963]
本稿では,SBORA(Standard Basis LoRA)を提案する。
SBoRAはトレーニング可能なパラメータの数を半分に減らし、LoRAと同様のトレーニング可能なパラメータの数でランクを2倍にする。
本研究は,LoraよりもSBoRA-FAの方が,常識推論や算術推論など,様々な微調整タスクにおいて優れていることを示す。
論文 参考訳(メタデータ) (2024-07-07T15:37:13Z) - DoRA: Weight-Decomposed Low-Rank Adaptation [57.68678247436207]
本稿では,FTとLoRAの相違点を明らかにするために,新しい重み分解解析法を提案する。
本研究は、FTの学習能力に類似することを目的として、重量分解低ランク適応(DoRA)を提案する。
DoRAは、事前訓練された重量を、微調整のための大きさと方向の2つの構成要素に分解する。
論文 参考訳(メタデータ) (2024-02-14T17:59:34Z) - Chain of LoRA: Efficient Fine-tuning of Language Models via Residual
Learning [31.036465632204663]
本稿では,Frank-Wolfeアルゴリズムにインスパイアされた反復最適化フレームワークであるLoRAのChainを紹介する。
計算コストやメモリコストを増大させることなく,COLA が LoRA を一貫して上回ることを示す。
論文 参考訳(メタデータ) (2024-01-08T14:26:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。