論文の概要: NeuroRVQ: Multi-Scale EEG Tokenization for Generative Large Brainwave Models
- arxiv url: http://arxiv.org/abs/2510.13068v1
- Date: Wed, 15 Oct 2025 01:26:52 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-16 20:13:28.462739
- Title: NeuroRVQ: Multi-Scale EEG Tokenization for Generative Large Brainwave Models
- Title(参考訳): NeuroRVQ: 世代別大脳波モデルのためのマルチスケール脳波トークン化
- Authors: Konstantinos Barmpas, Na Lee, Alexandros Koliousis, Yannis Panagakis, Dimitrios A. Adamos, Nikolaos Laskaris, Stefanos Zafeiriou,
- Abstract要約: 我々は、コードブックベースのトークン化装置を中心としたスケーラブルな大脳波モデル(LBM)であるNeuroRVQを紹介する。
我々のトークンライザは, (i) フル周波数のニューラルスペクトルを捕捉するマルチスケール特徴抽出モジュール, (ii) 高精細符号化のための階層的残留ベクトル量子化(RVQ)コードブック, (iii) 効率的なトレーニングのためのEEG信号位相および振幅認識損失関数を統合する。
実験の結果,NeuroRVQは再建誤差を低くし,様々な下流タスクにおいて既存のLBMよりも優れることがわかった。
- 参考スコア(独自算出の注目度): 66.91449452840318
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Electroencephalography (EEG) captures neural activity across multiple temporal and spectral scales, yielding signals that are rich but complex for representation learning. Recently, EEG foundation models trained to predict masked signal-tokens have shown promise for learning generalizable representations. However, their performance is hindered by their signal tokenization modules. Existing neural tokenizers fail to preserve high-frequency dynamics, limiting their ability to reconstruct EEG signals with high fidelity. We introduce NeuroRVQ, a scalable Large Brainwave Model (LBM) centered on a codebook-based tokenizer. Our tokenizer integrates: (i) multi-scale feature extraction modules that capture the full frequency neural spectrum; (ii) hierarchical residual vector quantization (RVQ) codebooks for high-resolution encoding; and, (iii) an EEG signal phase- and amplitude-aware loss function for efficient training. This design enables efficient EEG compression while supporting accurate reconstruction across all frequency bands, leading to robust generative masked modeling. Our empirical results demonstrate that NeuroRVQ achieves lower reconstruction error and outperforms existing LBMs on a variety of downstream tasks. More broadly, NeuroRVQ tokenizer establishes a strong prior for codebook-based general-purpose brainwave models, enabling advances in neural decoding, generative modeling and multimodal biosignal integration.
- Abstract(参考訳): 脳波(Electroencephalography,EEG)は、複数の時間的およびスペクトル的スケールにわたる神経活動を捉え、表現学習においてリッチだが複雑である信号を生成する。
近年,マスキング信号のトケインを予測するために訓練された脳波基礎モデルでは,一般化可能な表現の学習が期待されている。
しかし、その性能は信号トークン化モジュールによって妨げられる。
既存のニューラルトークンーザは高周波力学の保存に失敗し、高忠実度で脳波信号を再構成する能力を制限する。
我々は,コードブックベースのトークン化装置を中心に,スケーラブルな大脳波モデル(LBM)であるNeuroRVQを紹介する。
トークン化ツールが統合されます。
一 フル周波数ニューラルスペクトルを捕捉するマルチスケール特徴抽出モジュール
(II)高分解能符号化のための階層的残留ベクトル量子化(RVQ)符号ブック
三 効率的な訓練のための脳波信号位相及び振幅認識損失関数
この設計により、全ての周波数帯域の正確な再構成をサポートしながら効率的な脳波圧縮が可能となり、堅牢な生成マスクモデルが実現される。
実験の結果,NeuroRVQは再建誤差を低くし,様々な下流タスクにおいて既存のLBMよりも優れることがわかった。
より広範に、NeuroRVQトークンーは、コードブックベースの汎用脳波モデルの強力な先行性を確立し、ニューラルデコーディング、生成モデリング、マルチモーダル生体信号統合の進歩を可能にする。
関連論文リスト
- CodeBrain: Towards Decoupled Interpretability and Multi-Scale Architecture for EEG Foundation Model [52.466542039411515]
EEGファウンデーションモデル(EFM)は、タスク固有のモデルのスケーラビリティ問題に対処するために登場した。
このギャップを埋めるために設計された2段階のEMFであるCodeBrainを紹介します。
第1段階では、異種時間・周波数の脳波信号を離散トークンに分解するTFDual-Tokenizerを導入する。
第2段階では、構造化されたグローバル畳み込みとスライディングウインドウの注意を結合したマルチスケールEEGSSMアーキテクチャを提案する。
論文 参考訳(メタデータ) (2025-06-10T17:20:39Z) - BrainOmni: A Brain Foundation Model for Unified EEG and MEG Signals [46.121056431476156]
異種脳波とMEG記録を対象とする脳基礎モデルBrain Omniを提案する。
既存のアプローチは一般的に、パフォーマンスとクロスドメインのスケーラビリティを制限する、分離、モダリティ、データセット固有のモデルに依存します。
EEGの合計1,997時間、MEGデータの656時間は、事前トレーニングのために公開されているソースからキュレーションされ、標準化されている。
論文 参考訳(メタデータ) (2025-05-18T14:07:14Z) - Neural-MCRL: Neural Multimodal Contrastive Representation Learning for EEG-based Visual Decoding [2.587640069216139]
脳波(EEG)を用いた脳活動からの神経視覚表現のデコードは、脳-機械界面(BMI)の進行に不可欠である
既存の手法は、しばしばモダリティ内の意味的一貫性と完全性を見落とし、モダリティ間の効果的なセマンティックアライメントを欠いている。
本稿では,セマンティックブリッジとクロスアテンション機構によるマルチモーダルアライメントを実現する新しいフレームワークであるNeural-MCRLを提案する。
論文 参考訳(メタデータ) (2024-12-23T07:02:44Z) - NeuroLM: A Universal Multi-task Foundation Model for Bridging the Gap between Language and EEG Signals [21.363722751437066]
我々は,脳波を外国語として扱うことで,Large Language Models (LLMs) の機能を活用する,最初のマルチタスク基盤モデルであるNeuroLMを提案する。
我々のアプローチは、脳波信号を離散的な神経トークンにエンコードするベクトル量子化された時間周波数予測を通じて、テキスト整列型ニューラルトークンを学習することから始まります。
我々は、LLMを具体化することによって、NeuroLMは命令チューニングによって単一のモデル内で多様な脳波タスクを統合できることを初めて実証した。
論文 参考訳(メタデータ) (2024-08-27T12:07:09Z) - MindFormer: Semantic Alignment of Multi-Subject fMRI for Brain Decoding [50.55024115943266]
本稿では,MindFormer を用いたマルチオブジェクト fMRI 信号のセマンティックアライメント手法を提案する。
このモデルは、fMRIから画像生成のための安定拡散モデルや、fMRIからテキスト生成のための大規模言語モデル(LLM)の条件付けに使用できるfMRI条件付き特徴ベクトルを生成するように設計されている。
実験の結果,MindFormerは意味的に一貫した画像とテキストを異なる主題にわたって生成することがわかった。
論文 参考訳(メタデータ) (2024-05-28T00:36:25Z) - Contrastive-Signal-Dependent Plasticity: Self-Supervised Learning in Spiking Neural Circuits [61.94533459151743]
この研究は、スパイキングネットワークのシナプスを調整するための神経生物学的に動機づけられたスキームを設計することの課題に対処する。
我々の実験シミュレーションは、繰り返しスパイクネットワークを訓練する際、他の生物学的に証明可能なアプローチに対して一貫した優位性を示す。
論文 参考訳(メタデータ) (2023-03-30T02:40:28Z) - Convolutional Neural Generative Coding: Scaling Predictive Coding to
Natural Images [79.07468367923619]
畳み込み型神経生成符号化(Conv-NGC)を開発した。
我々は、潜伏状態マップを段階的に洗練する柔軟な神経生物学的動機付けアルゴリズムを実装した。
本研究は,脳にインスパイアされたニューラル・システムによる再建と画像復調の課題に対する効果について検討する。
論文 参考訳(メタデータ) (2022-11-22T06:42:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。