論文の概要: I Am Aligned, But With Whom? MENA Values Benchmark for Evaluating Cultural Alignment and Multilingual Bias in LLMs
- arxiv url: http://arxiv.org/abs/2510.13154v1
- Date: Wed, 15 Oct 2025 05:10:57 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-16 20:13:28.502437
- Title: I Am Aligned, But With Whom? MENA Values Benchmark for Evaluating Cultural Alignment and Multilingual Bias in LLMs
- Title(参考訳): MENA Values Benchmarks Benchmark for Evaluation of Culture Alignment and Multilingual Bias in LLMs
- Authors: Pardis Sadat Zahraei, Ehsaneddin Asgari,
- Abstract要約: 大規模言語モデル(LLM)の文化的アライメントと多言語バイアスを評価するための新しいベンチマークであるMENAValuesを紹介する。
大規模で権威ある人的調査から、我々は16カ国の人口レベルの応答分布を持つMENAの社会文化的景観を捉えた構造化データセットをキュレートした。
分析の結果,同じ質問が言語に基づいて大きく異なる反応をもたらす「クロス・Lingual Value Shifts」,その理由の説明を促す「Reasoning-induced Degradation」,モデルがセンシティブな質問を拒否する「Logit Leakage」,内部確率が強く隠蔽される「Logit Leakage」の3つの重要な現象が明らかになった。
- 参考スコア(独自算出の注目度): 5.060243371992739
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce MENAValues, a novel benchmark designed to evaluate the cultural alignment and multilingual biases of large language models (LLMs) with respect to the beliefs and values of the Middle East and North Africa (MENA) region, an underrepresented area in current AI evaluation efforts. Drawing from large-scale, authoritative human surveys, we curate a structured dataset that captures the sociocultural landscape of MENA with population-level response distributions from 16 countries. To probe LLM behavior, we evaluate diverse models across multiple conditions formed by crossing three perspective framings (neutral, personalized, and third-person/cultural observer) with two language modes (English and localized native languages: Arabic, Persian, Turkish). Our analysis reveals three critical phenomena: "Cross-Lingual Value Shifts" where identical questions yield drastically different responses based on language, "Reasoning-Induced Degradation" where prompting models to explain their reasoning worsens cultural alignment, and "Logit Leakage" where models refuse sensitive questions while internal probabilities reveal strong hidden preferences. We further demonstrate that models collapse into simplistic linguistic categories when operating in native languages, treating diverse nations as monolithic entities. MENAValues offers a scalable framework for diagnosing cultural misalignment, providing both empirical insights and methodological tools for developing more culturally inclusive AI.
- Abstract(参考訳): 我々は,中東と北アフリカ(MENA)地域の信念と価値観に関して,大規模言語モデル(LLM)の文化的アライメントと多言語バイアスを評価するために設計された新しいベンチマークであるMENAValuesを紹介した。
大規模で権威ある人的調査から、我々は16カ国の人口レベルの応答分布を持つMENAの社会文化的景観を捉えた構造化データセットをキュレートした。
LLMの振る舞いを探索するために,3つの視点(中性,パーソナライズド,および3人・文化的オブザーバー)を2つの言語モード(アラビア語,ペルシア語,トルコ語)で横断して形成した多種多様なモデルを評価する。
分析の結果,同じ質問が言語に基づいて大きく異なる反応をもたらす「クロス・Lingual Value Shifts」,その理由の説明を促す「Reasoning-induced Degradation」,モデルがセンシティブな質問を拒否する「Logit Leakage」,内部確率が強い隠された好みを示す「Logit Leakage」の3つの重要な現象が明らかになった。
さらに、母国語で運用する場合、モデルは単純化された言語カテゴリーに崩壊し、多様な国をモノリシックな存在として扱うことを実証した。
MENAValuesは、文化的不一致を診断するためのスケーラブルなフレームワークを提供し、より文化的に包括的なAIを開発するための実証的な洞察と方法論的なツールを提供する。
関連論文リスト
- MMA-ASIA: A Multilingual and Multimodal Alignment Framework for Culturally-Grounded Evaluation [91.22008265721952]
MMA-ASIAは、アジア8か国と10か国を対象とする人為的、多言語的、マルチモーダルなベンチマークに重点を置いている。
これは、テキスト、画像(視覚的質問応答)、音声の3つのモードにまたがる入力レベルで整列された最初のデータセットである。
i) 国間の文化的認識格差、(ii) 言語間の整合性、(iii) 言語間の整合性、(iv) 文化知識の一般化、(v) 基礎的妥当性を評価する5次元評価プロトコルを提案する。
論文 参考訳(メタデータ) (2025-10-07T14:12:12Z) - SESGO: Spanish Evaluation of Stereotypical Generative Outputs [1.1549572298362782]
本稿では,多言語大言語モデル(LLM)におけるバイアス評価における限界ギャップについて論じる。
現在の評価は、主に米国英語中心であり、他の言語や文化の文脈で潜在的に危害が及ばないままである。
教科学習における社会的偏見を検出するための,新しい文化的な枠組みを提案する。
論文 参考訳(メタデータ) (2025-09-03T14:04:51Z) - MyCulture: Exploring Malaysia's Diverse Culture under Low-Resource Language Constraints [7.822567458977689]
MyCultureは、マレーシアの文化に関する大規模言語モデル(LLM)を総合的に評価するために設計されたベンチマークである。
従来のベンチマークとは異なり、MyCultureは未定義のオプションなしで、新しいオープンエンドの複数選択質問フォーマットを採用している。
構造化された出力と自由形式出力のモデル性能を比較して構造バイアスを解析し、多言語的プロンプト変動による言語バイアスを評価する。
論文 参考訳(メタデータ) (2025-08-07T14:17:43Z) - Disentangling Language and Culture for Evaluating Multilingual Large Language Models [48.06219053598005]
本稿では,LLMの多言語機能を包括的に評価するデュアル評価フレームワークを提案する。
言語媒体と文化的文脈の次元に沿って評価を分解することにより、LLMが言語間を横断的に処理する能力の微妙な分析を可能にする。
論文 参考訳(メタデータ) (2025-05-30T14:25:45Z) - MAKIEval: A Multilingual Automatic WiKidata-based Framework for Cultural Awareness Evaluation for LLMs [37.98920430188422]
MAKIEvalは、大規模言語モデルにおける文化的認識を評価するための自動多言語フレームワークである。
モデル出力における文化的実体を自動的に識別し、構造化された知識にリンクする。
オープンソースのシステムとプロプライエタリシステムの両方を対象とする,世界のさまざまな場所で開発された7つのLLMを評価した。
論文 参考訳(メタデータ) (2025-05-27T19:29:40Z) - CARE: Multilingual Human Preference Learning for Cultural Awareness [48.760262639641496]
我々は,3,490の文化的特異な質問と31.7kの人的判断応答を含む多言語リソースであるtextbfCAREを紹介する。
質の高いネイティブな嗜好の質が、様々なLMの文化意識をいかに向上させるかを示す。
分析の結果,初期の文化的パフォーマンスが向上したモデルの方がアライメントの恩恵を受けやすいことがわかった。
論文 参考訳(メタデータ) (2025-04-07T14:57:06Z) - Global MMLU: Understanding and Addressing Cultural and Linguistic Biases in Multilingual Evaluation [71.59208664920452]
多言語データセットの文化的バイアスは、グローバルベンチマークとしての有効性に重大な課題をもたらす。
MMLUの進歩は西洋中心の概念の学習に大きく依存しており、文化に敏感な知識を必要とする質問の28%がそうである。
改良されたMMLUであるGlobal MMLUをリリースし,42言語を対象に評価を行った。
論文 参考訳(メタデータ) (2024-12-04T13:27:09Z) - CIVICS: Building a Dataset for Examining Culturally-Informed Values in Large Language Models [59.22460740026037]
大規模言語モデル(LLM)の社会的・文化的変動を評価するためのデータセット「CIVICS:文化インフォームド・バリュース・インクルーシブ・コーパス・フォー・ソシエティ・インパクト」
我々は、LGBTQIの権利、社会福祉、移民、障害権利、代理など、特定の社会的に敏感なトピックに対処する、手作りの多言語プロンプトのデータセットを作成します。
論文 参考訳(メタデータ) (2024-05-22T20:19:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。