論文の概要: Near-Optimality of Contrastive Divergence Algorithms
- arxiv url: http://arxiv.org/abs/2510.13438v1
- Date: Wed, 15 Oct 2025 11:35:58 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-16 20:13:28.648249
- Title: Near-Optimality of Contrastive Divergence Algorithms
- Title(参考訳): コントラスト微分アルゴリズムの準最適性
- Authors: Pierre Glaser, Kevin Han Huang, Arthur Gretton,
- Abstract要約: パラメトリックレートが$O(n-1 / 2)$であることを示す。
さらに、CDは、その分散がクラムアーラオの下界に近いという意味で、ほぼ最適であることを示す。
- 参考スコア(独自算出の注目度): 22.499181350622617
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We perform a non-asymptotic analysis of the contrastive divergence (CD) algorithm, a training method for unnormalized models. While prior work has established that (for exponential family distributions) the CD iterates asymptotically converge at an $O(n^{-1 / 3})$ rate to the true parameter of the data distribution, we show, under some regularity assumptions, that CD can achieve the parametric rate $O(n^{-1 / 2})$. Our analysis provides results for various data batching schemes, including the fully online and minibatch ones. We additionally show that CD can be near-optimal, in the sense that its asymptotic variance is close to the Cram\'er-Rao lower bound.
- Abstract(参考訳): 本研究では,非正規化モデルに対する訓練手法であるコントラッシブ・ディペンジェンス(CD)アルゴリズムの非漸近解析を行う。
先行研究では、(指数関数的な家族分布に対して)CDはデータ分布の真のパラメータに漸近的に$O(n^{-1 / 3})$レートで収束することが確立されているが、いくつかの正規性仮定の下では、CDはパラメトリックレート$O(n^{-1 / 2})$を達成できることが示されている。
我々の分析は、オンラインとミニバッチを含む様々なデータバッチ方式の結果を提供する。
さらに、その漸近的分散がCram\'er-Rao の下界に近いという意味で、CDがほぼ最適であることを示す。
関連論文リスト
- Rate Analysis of Coupled Distributed Stochastic Approximation for Misspecified Optimization [0.552480439325792]
パラメトリックな特徴を持つ不完全な情報を持つ分散最適化問題として$n$のエージェントを考える。
本稿では,各エージェントが未知パラメータの現在の信念を更新する分散近似アルゴリズムを提案する。
アルゴリズムの性能に影響を与える因子を定量的に解析し、決定変数の平均二乗誤差が$mathcalO(frac1nk)+mathcalOleft(frac1sqrtn (1-rho_w)right)frac1k1.5で有界であることを証明する。
論文 参考訳(メタデータ) (2024-04-21T14:18:49Z) - Towards Faster Non-Asymptotic Convergence for Diffusion-Based Generative
Models [49.81937966106691]
我々は拡散モデルのデータ生成過程を理解するための非漸近理論のスイートを開発する。
従来の研究とは対照的に,本理論は基本的だが多目的な非漸近的アプローチに基づいて開発されている。
論文 参考訳(メタデータ) (2023-06-15T16:30:08Z) - Improved Analysis of Score-based Generative Modeling: User-Friendly
Bounds under Minimal Smoothness Assumptions [9.953088581242845]
2次モーメントを持つ任意のデータ分布に対して,コンバージェンス保証と複雑性を提供する。
我々の結果は、対数共空性や機能的不等式を前提としない。
我々の理論解析は、異なる離散近似の比較を提供し、実際の離散化点の選択を導くかもしれない。
論文 参考訳(メタデータ) (2022-11-03T15:51:00Z) - Explicit Second-Order Min-Max Optimization: Practical Algorithms and Complexity Analysis [71.05708939639537]
本研究では,非制約問題に対するグローバルなサドル点を求めるために,不正確なNewton型手法をいくつか提案し,解析する。
提案手法は,Sur分解の必要回数の$O(log(1/eps)$因子をシェービングすることで,既存のライン検索に基づくmin-max最適化を改善する。
論文 参考訳(メタデータ) (2022-10-23T21:24:37Z) - Optimal and instance-dependent guarantees for Markovian linear stochastic approximation [47.912511426974376]
標準スキームの最後の繰り返しの2乗誤差に対して、$t_mathrmmix tfracdn$の非漸近境界を示す。
マルコフ雑音による政策評価について,これらの結果のまとめを導出する。
論文 参考訳(メタデータ) (2021-12-23T18:47:50Z) - Convergence Rates of Stochastic Gradient Descent under Infinite Noise
Variance [14.06947898164194]
ヘビーテールは様々なシナリオで勾配降下 (sgd) で現れる。
SGDの収束保証は、潜在的に無限のばらつきを持つ状態依存性および重尾ノイズ下で提供します。
その結果,SGDは無限に分散した重尾雑音下であっても,地球最適値に収束できることが示された。
論文 参考訳(メタデータ) (2021-02-20T13:45:11Z) - Last iterate convergence of SGD for Least-Squares in the Interpolation
regime [19.05750582096579]
基本最小二乗構成におけるノイズレスモデルについて検討する。
最適予測器が完全に入力に適合すると仮定し、$langletheta_*, phi(X) rangle = Y$, ここで$phi(X)$は無限次元の非線型特徴写像を表す。
論文 参考訳(メタデータ) (2021-02-05T14:02:20Z) - Variance-Reduced Off-Policy TDC Learning: Non-Asymptotic Convergence
Analysis [27.679514676804057]
オフ・ポリシー・セッティングにおける2つの時間スケールTDCアルゴリズムの分散化手法を開発した。
実験により,提案した分散還元型TDCは,従来のTDCと分散還元型TDよりも収束誤差が小さいことを示した。
論文 参考訳(メタデータ) (2020-10-26T01:33:05Z) - ROOT-SGD: Sharp Nonasymptotics and Near-Optimal Asymptotics in a Single Algorithm [71.13558000599839]
第一次アルゴリズムを用いて,厳密な凸と滑らかな非制約最適化問題の解法について検討する。
我々は,過去の勾配を平均化し,実装が容易な小説「Recursive One-Over-T SGD」を考案した。
有限サンプル, 漸近感覚, 感覚の両面において, 最先端の性能を同時に達成できることを実証する。
論文 参考訳(メタデータ) (2020-08-28T14:46:56Z) - Non-asymptotic Convergence of Adam-type Reinforcement Learning
Algorithms under Markovian Sampling [56.394284787780364]
本稿では、ポリシー勾配(PG)と時間差(TD)学習の2つの基本RLアルゴリズムに対して、最初の理論的収束解析を行う。
一般の非線形関数近似の下では、PG-AMSGradは定常点の近傍に収束し、$mathcalO(log T/sqrtT)$である。
線形関数近似の下では、一定段階のTD-AMSGradは$mathcalO(log T/sqrtT)の速度で大域的最適化の近傍に収束する。
論文 参考訳(メタデータ) (2020-02-15T00:26:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。