論文の概要: Last iterate convergence of SGD for Least-Squares in the Interpolation
regime
- arxiv url: http://arxiv.org/abs/2102.03183v1
- Date: Fri, 5 Feb 2021 14:02:20 GMT
- ステータス: 処理完了
- システム内更新日: 2021-02-08 14:45:36.115181
- Title: Last iterate convergence of SGD for Least-Squares in the Interpolation
regime
- Title(参考訳): 補間系における最小二乗に対するSGDの最終反復収束
- Authors: Aditya Varre, Loucas Pillaud-Vivien, Nicolas Flammarion
- Abstract要約: 基本最小二乗構成におけるノイズレスモデルについて検討する。
最適予測器が完全に入力に適合すると仮定し、$langletheta_*, phi(X) rangle = Y$, ここで$phi(X)$は無限次元の非線型特徴写像を表す。
- 参考スコア(独自算出の注目度): 19.05750582096579
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Motivated by the recent successes of neural networks that have the ability to
fit the data perfectly and generalize well, we study the noiseless model in the
fundamental least-squares setup. We assume that an optimum predictor fits
perfectly inputs and outputs $\langle \theta_* , \phi(X) \rangle = Y$, where
$\phi(X)$ stands for a possibly infinite dimensional non-linear feature map. To
solve this problem, we consider the estimator given by the last iterate of
stochastic gradient descent (SGD) with constant step-size. In this context, our
contribution is two fold: (i) from a (stochastic) optimization perspective, we
exhibit an archetypal problem where we can show explicitly the convergence of
SGD final iterate for a non-strongly convex problem with constant step-size
whereas usual results use some form of average and (ii) from a statistical
perspective, we give explicit non-asymptotic convergence rates in the
over-parameterized setting and leverage a fine-grained parameterization of the
problem to exhibit polynomial rates that can be faster than $O(1/T)$. The link
with reproducing kernel Hilbert spaces is established.
- Abstract(参考訳): データの完全適合性と一般化が可能なニューラルネットワークの最近の成功に動機づけられ、基本的な最小二乗構成でノイズレスモデルの研究を行った。
最適予測器は、$\langle \theta_* , \phi(X) \rangle = Y$ に完全に収まると仮定し、ここで $\phi(X)$ は無限次元非線形特徴写像を意味する。
この問題を解決するために,確率勾配降下(SGD)の最終反復によるステップサイズの推定について検討する。
In this context, our contribution is two fold: (i) from a (stochastic) optimization perspective, we exhibit an archetypal problem where we can show explicitly the convergence of SGD final iterate for a non-strongly convex problem with constant step-size whereas usual results use some form of average and (ii) from a statistical perspective, we give explicit non-asymptotic convergence rates in the over-parameterized setting and leverage a fine-grained parameterization of the problem to exhibit polynomial rates that can be faster than $O(1/T)$.
再生カーネルヒルベルト空間とのリンクが確立される。
関連論文リスト
- Nonasymptotic Analysis of Stochastic Gradient Descent with the Richardson-Romberg Extrapolation [22.652143194356864]
ステップサイズが一定となる勾配勾配(SGD)アルゴリズムを用いて, 強い凸と滑らかな問題を解く問題に対処する。
得られた推定子の平均二乗誤差を$n$の反復数に対して拡張する。
我々は、この鎖が定義された重み付きワッサーシュタイン半計量に関して幾何学的にエルゴード的であることを確証する。
論文 参考訳(メタデータ) (2024-10-07T15:02:48Z) - Learning with Norm Constrained, Over-parameterized, Two-layer Neural Networks [54.177130905659155]
近年の研究では、再生カーネルヒルベルト空間(RKHS)がニューラルネットワークによる関数のモデル化に適した空間ではないことが示されている。
本稿では,有界ノルムを持つオーバーパラメータ化された2層ニューラルネットワークに適した関数空間について検討する。
論文 参考訳(メタデータ) (2024-04-29T15:04:07Z) - Revisiting the Last-Iterate Convergence of Stochastic Gradient Methods [25.831462008050387]
グラディエント・Descent(SGD)アルゴリズムは、実際の性能が良く、理論的な理解が欠如していることから、人々の関心を喚起している。
有限収束がより広い合成最適化や非ユークリッドノルムに証明可能な拡張が可能かどうかはまだ不明である。
論文 参考訳(メタデータ) (2023-12-13T21:41:06Z) - Breaking the Heavy-Tailed Noise Barrier in Stochastic Optimization Problems [56.86067111855056]
構造密度の重み付き雑音によるクリップ最適化問題を考察する。
勾配が有限の順序モーメントを持つとき、$mathcalO(K-(alpha - 1)/alpha)$よりも高速な収束率が得られることを示す。
得られた推定値が無視可能なバイアスと制御可能な分散を持つことを示す。
論文 参考訳(メタデータ) (2023-11-07T17:39:17Z) - Generalization Bounds for Stochastic Gradient Descent via Localized
$\varepsilon$-Covers [16.618918548497223]
本稿では,SGDの軌道に局在する新しい被覆手法を提案する。
このローカライゼーションは、境界数によって測定されるアルゴリズム固有のクラスタリングを提供する。
これらの結果は様々な文脈で導き出され、既知の最先端のラベルレートが向上する。
論文 参考訳(メタデータ) (2022-09-19T12:11:07Z) - Optimal Extragradient-Based Bilinearly-Coupled Saddle-Point Optimization [116.89941263390769]
滑らかな凸凹凸結合型サドル点問題, $min_mathbfxmax_mathbfyF(mathbfx) + H(mathbfx,mathbfy)$ を考える。
漸進的勾配指数(AG-EG)降下指数アルゴリズムについて述べる。
論文 参考訳(メタデータ) (2022-06-17T06:10:20Z) - Convergence Rates of Stochastic Gradient Descent under Infinite Noise
Variance [14.06947898164194]
ヘビーテールは様々なシナリオで勾配降下 (sgd) で現れる。
SGDの収束保証は、潜在的に無限のばらつきを持つ状態依存性および重尾ノイズ下で提供します。
その結果,SGDは無限に分散した重尾雑音下であっても,地球最適値に収束できることが示された。
論文 参考訳(メタデータ) (2021-02-20T13:45:11Z) - ROOT-SGD: Sharp Nonasymptotics and Near-Optimal Asymptotics in a Single Algorithm [71.13558000599839]
第一次アルゴリズムを用いて,厳密な凸と滑らかな非制約最適化問題の解法について検討する。
我々は,過去の勾配を平均化し,実装が容易な小説「Recursive One-Over-T SGD」を考案した。
有限サンプル, 漸近感覚, 感覚の両面において, 最先端の性能を同時に達成できることを実証する。
論文 参考訳(メタデータ) (2020-08-28T14:46:56Z) - On the Almost Sure Convergence of Stochastic Gradient Descent in
Non-Convex Problems [75.58134963501094]
本稿では,勾配降下(SGD)の軌跡を解析する。
我々はSGDが厳格なステップサイズポリシーのために1ドルでサドルポイント/マニフォールドを避けることを示す。
論文 参考訳(メタデータ) (2020-06-19T14:11:26Z) - Tight Nonparametric Convergence Rates for Stochastic Gradient Descent
under the Noiseless Linear Model [0.0]
このモデルに基づく最小二乗リスクに対する1パス, 固定段差勾配勾配の収束度を解析した。
特殊な場合として、ランダムなサンプリング点における値のノイズのない観測から単位区間上の実関数を推定するオンラインアルゴリズムを解析する。
論文 参考訳(メタデータ) (2020-06-15T08:25:50Z) - A Simple Convergence Proof of Adam and Adagrad [74.24716715922759]
我々はAdam Adagradと$O(d(N)/st)$アルゴリズムの収束の証明を示す。
Adamはデフォルトパラメータで使用する場合と同じ収束$O(d(N)/st)$で収束する。
論文 参考訳(メタデータ) (2020-03-05T01:56:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。