論文の概要: LIBERO-Plus: In-depth Robustness Analysis of Vision-Language-Action Models
- arxiv url: http://arxiv.org/abs/2510.13626v1
- Date: Wed, 15 Oct 2025 14:51:36 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-16 20:13:28.720254
- Title: LIBERO-Plus: In-depth Robustness Analysis of Vision-Language-Action Models
- Title(参考訳): LIBERO-Plus:視覚・言語・行動モデルにおける奥行きロバストネス解析
- Authors: Senyu Fei, Siyin Wang, Junhao Shi, Zihao Dai, Jikun Cai, Pengfang Qian, Li Ji, Xinzhe He, Shiduo Zhang, Zhaoye Fei, Jinlan Fu, Jingjing Gong, Xipeng Qiu,
- Abstract要約: 制御された摂動を7次元にわたって導入することにより,系統的な脆弱性解析を行う。
モデルは、カメラの視点やロボットの初期状態を含む摂動要因に対して極端に敏感である。
驚くべきことに、モデルは言語の変化にほとんど敏感であり、さらなる実験により、モデルは言語命令を完全に無視する傾向があることが明らかになった。
- 参考スコア(独自算出の注目度): 49.92148175114169
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Visual-Language-Action (VLA) models report impressive success rates on robotic manipulation benchmarks, yet these results may mask fundamental weaknesses in robustness. We perform a systematic vulnerability analysis by introducing controlled perturbations across seven dimensions: objects layout, camera viewpoints, robot initial states, language instructions, light conditions, background textures and sensor noise. We comprehensively analyzed multiple state-of-the-art models and revealed consistent brittleness beneath apparent competence. Our analysis exposes critical weaknesses: models exhibit extreme sensitivity to perturbation factors, including camera viewpoints and robot initial states, with performance dropping from 95% to below 30% under modest perturbations. Surprisingly, models are largely insensitive to language variations, with further experiments revealing that models tend to ignore language instructions completely. Our findings challenge the assumption that high benchmark scores equate to true competency and highlight the need for evaluation practices that assess reliability under realistic variation.
- Abstract(参考訳): VLA(Visual-Language-Action)モデルでは、ロボット操作ベンチマークで顕著な成功率を報告しているが、これらの結果は堅牢性の根本的な弱点を隠蔽する可能性がある。
オブジェクトレイアウト,カメラ視点,ロボットの初期状態,言語命令,光条件,背景テクスチャ,センサノイズの7次元にわたって制御された摂動を導入することで,系統的な脆弱性解析を行う。
我々は,複数の最先端モデルを包括的に分析し,明らかな能力の下で一貫した脆さを明らかにした。
モデルでは、カメラの視点やロボットの初期状態を含む摂動要因に対する過度な感度を示し、パフォーマンスは、控えめな摂動の下で95%から30%以下に低下する。
驚くべきことに、モデルは言語の変化にほとんど敏感であり、さらなる実験により、モデルは言語命令を完全に無視する傾向があることが明らかになった。
本研究は,高いベンチマークスコアが真の能力に等しいという仮定に挑戦し,現実的な変動の下で信頼性を評価するための評価プラクティスの必要性を強調した。
関連論文リスト
- Evaluating Robustness of Vision-Language Models Under Noisy Conditions [0.0176290054713643]
VLM(Vision-Language Models)は、画像キャプションや視覚的質問応答といったマルチモーダルタスクにおいて、例外的な成功を収めている。
制御摂動下での複数の最先端VLMの性能を評価するための総合評価フレームワークを提案する。
論文 参考訳(メタデータ) (2025-09-15T22:31:21Z) - LLMs Are Not Yet Ready for Deepfake Image Detection [8.364956401923108]
視覚言語モデル(VLM)は、様々な領域にまたがる有望なツールとして登場した。
本研究は, ファスワップ, 再現, 合成生成の3つの主要なディープフェイクタイプに焦点を当てた。
解析の結果、VLMはコヒーレントな説明を生成でき、表面レベルの異常を検出できるが、スタンドアロン検出システムとしてはまだ信頼できないことが示唆された。
論文 参考訳(メタデータ) (2025-06-12T08:27:24Z) - Benchmarking Adversarial Robustness to Bias Elicitation in Large Language Models: Scalable Automated Assessment with LLM-as-a-Judge [0.0]
大規模言語モデル(LLM)は人工知能に革命をもたらし、機械翻訳、要約、会話エージェントの進歩を推進している。
近年の研究では、LSMは偏りのある反応を誘発するために設計された敵攻撃に弱いままである。
本研究は,LLMの逆バイアス誘発に対する堅牢性を評価するためのスケーラブルなベンチマークフレームワークを提案する。
論文 参考訳(メタデータ) (2025-04-10T16:00:59Z) - LINGOLY-TOO: Disentangling Reasoning from Knowledge with Templatised Orthographic Obfuscation [1.2576388595811496]
自然言語を基盤とした挑戦的推論ベンチマークであるlingOLY-TOOを紹介する。
実言語で記述された推論問題をパーミュレートして、多数の質問のバリエーションを生成する。
実験と分析は、モデルが推論を回避し、事前の知識から回答できることを示している。
論文 参考訳(メタデータ) (2025-03-04T19:57:47Z) - Towards Evaluating the Robustness of Visual State Space Models [63.14954591606638]
視覚状態空間モデル(VSSM)は視覚知覚タスクにおいて顕著な性能を示した。
しかし、自然と敵対的な摂動の下での頑丈さは依然として重要な懸念事項である。
様々な摂動シナリオ下でのVSSMの頑健さを総合的に評価する。
論文 参考訳(メタデータ) (2024-06-13T17:59:44Z) - A Comprehensive Evaluation and Analysis Study for Chinese Spelling Check [53.152011258252315]
音声とグラフィックの情報を合理的に使用することは,中国語のスペルチェックに有効であることを示す。
モデルはテストセットのエラー分布に敏感であり、モデルの欠点を反映している。
一般的なベンチマークであるSIGHANは、モデルの性能を確実に評価できない。
論文 参考訳(メタデータ) (2023-07-25T17:02:38Z) - On the Robustness of Aspect-based Sentiment Analysis: Rethinking Model,
Data, and Training [109.9218185711916]
アスペクトベースの感情分析(ABSA)は、ソーシャルメディアのテキストやレビューの背後にある製品やサービスの特定の側面に対して、特定の感情の極性を自動的に推測することを目的としている。
我々は、モデル、データ、トレーニングを含むあらゆる可能な角度からボトルネックを体系的に再考することで、ABSAの堅牢性を高めることを提案する。
論文 参考訳(メタデータ) (2023-04-19T11:07:43Z) - Adversarial GLUE: A Multi-Task Benchmark for Robustness Evaluation of
Language Models [86.02610674750345]
AdvGLUE(Adversarial GLUE)は、様々な種類の敵攻撃の下で、現代の大規模言語モデルの脆弱性を調査し評価するための新しいマルチタスクベンチマークである。
GLUEタスクに14の逆攻撃手法を適用してAdvGLUEを構築する。
テストしたすべての言語モデルとロバストなトレーニングメソッドは、AdvGLUEではパフォーマンスが悪く、スコアは明確な精度よりもはるかに遅れています。
論文 参考訳(メタデータ) (2021-11-04T12:59:55Z) - Evaluating Deception Detection Model Robustness To Linguistic Variation [10.131671217810581]
認知ニュース検出の設定における言語的変化に対するモデル堅牢性の解析を提案する。
2つの予測タスクを検討し,3つの最先端組込みを比較して,モデル性能の一貫した傾向を強調する。
キャラクタあるいは混合アンサンブルモデルが最も効果的な防御であり,キャラクタ摂動に基づく攻撃戦術がより成功していることがわかった。
論文 参考訳(メタデータ) (2021-04-23T17:25:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。