論文の概要: Towards Adversarial Robustness and Uncertainty Quantification in DINOv2-based Few-Shot Anomaly Detection
- arxiv url: http://arxiv.org/abs/2510.13643v1
- Date: Wed, 15 Oct 2025 15:06:45 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-16 20:13:28.725582
- Title: Towards Adversarial Robustness and Uncertainty Quantification in DINOv2-based Few-Shot Anomaly Detection
- Title(参考訳): DINOv2を用いたFew-Shot異常検出における対向ロバスト性と不確かさの定量化に向けて
- Authors: Akib Mohammed Khan, Bartosz Krawczyk,
- Abstract要約: DINOv2のような基礎モデルは、数発の異常検出において強い性能を示している。
本研究は, 敵攻撃と不確実性評価に関する最初の体系的研究である。
生の異常スコアは校正が不十分で、信頼性と正しさのギャップが明らかになり、安全クリティカルな使用が制限されることがわかりました。
- 参考スコア(独自算出の注目度): 6.288045889067255
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Foundation models such as DINOv2 have shown strong performance in few-shot anomaly detection, yet two key questions remain unexamined: (i) how susceptible are these detectors to adversarial perturbations; and (ii) how well do their anomaly scores reflect calibrated uncertainty? Building on AnomalyDINO, a training-free deep nearest-neighbor detector over DINOv2 features, we present one of the first systematic studies of adversarial attacks and uncertainty estimation in this setting. To enable white-box gradient attacks while preserving test-time behavior, we attach a lightweight linear head to frozen DINOv2 features only for crafting perturbations. Using this heuristic, we evaluate the impact of FGSM across the MVTec-AD and VisA datasets and observe consistent drops in F1, AUROC, AP, and G-mean, indicating that imperceptible perturbations can flip nearest-neighbor relations in feature space to induce confident misclassification. Complementing robustness, we probe reliability and find that raw anomaly scores are poorly calibrated, revealing a gap between confidence and correctness that limits safety-critical use. As a simple, strong baseline toward trustworthiness, we apply post-hoc Platt scaling to the anomaly scores for uncertainty estimation. The resulting calibrated posteriors yield significantly higher predictive entropy on adversarially perturbed inputs than on clean ones, enabling a practical flagging mechanism for attack detection while reducing calibration error (ECE). Our findings surface concrete vulnerabilities in DINOv2-based few-shot anomaly detectors and establish an evaluation protocol and baseline for robust, uncertainty-aware anomaly detection. We argue that adversarial robustness and principled uncertainty quantification are not optional add-ons but essential capabilities if anomaly detection systems are to be trustworthy and ready for real-world deployment.
- Abstract(参考訳): DINOv2のような基礎モデルは、数発の異常検出において強い性能を示しているが、2つの重要な疑問は未検討のままである。
一 これらの検出器が敵の摂動に対してどれほど感受性があるか、及び
二 異常スコアが校正の不確かさをどの程度反映しているか。
DINOv2 上の非トレーニングフリー深部近傍検出器である AnomalyDINO 上に構築され,この環境下での敵攻撃と不確実性評価に関する最初の系統的研究の1つである。
テスト時の動作を保ちながら、ホワイトボックス勾配攻撃を可能にするため、軽量なリニアヘッドを凍結したDINOv2機能に取り付け、摂動を発生させる。
このヒューリスティックを用いて、MVTec-ADおよびVisAデータセットにおけるFGSMの影響を評価し、F1、AUROC、AP、G-meanにおける一貫した降下を観測し、知覚不能な摂動が特徴空間において最も近い隣の関係を反転させ、確実な誤分類を引き起こすことを示唆した。
頑健さを補うことで、信頼性を調査し、生の異常スコアの校正が不十分であることを発見し、安全クリティカルな使用を制限する信頼性と正しさのギャップを明らかにする。
信頼度に対する単純で強力なベースラインとして、不確実性推定のための異常スコアにポストホットプラットスケーリングを適用する。
得られたキャリブレーション後部は、クリーンなキャリブレーション誤差(ECE)を低減しつつ、攻撃検出のための実用的なフラグング機構を実現することができる。
本研究は,DINOv2をベースとした小銃異常検出装置の具体的な脆弱性を明らかにし,ロバストかつ不確実性を考慮した異常検出のための評価プロトコルとベースラインを確立した。
我々は、敵の堅牢性と原理的不確実性定量化はオプションのアドオンではなく、異常検出システムが現実の展開に適した信頼性と準備ができている場合、必須の機能であると主張している。
関連論文リスト
- Uncertainty-Driven Reliability: Selective Prediction and Trustworthy Deployment in Modern Machine Learning [1.2183405753834562]
この論文は、不確実性推定が機械学習(ML)システムの安全性と信頼性を高める方法について考察する。
まず、モデルのトレーニング軌道は、アーキテクチャの変更や損失を伴わずに活用できるような、豊富な不確実性信号を含むことを示す。
本稿では,タスク間で動作し,深層アンサンブルのコストを回避し,最先端の選択的予測性能を実現する軽量なポストホック禁忌手法を提案する。
論文 参考訳(メタデータ) (2025-08-11T02:33:53Z) - Integrating uncertainty quantification into randomized smoothing based robustness guarantees [18.572496359670797]
ディープニューラルネットワークは、安全クリティカルなアプリケーションにおいて有害な誤った予測を引き起こす可能性のある敵攻撃に対して脆弱である。
ランダムな滑らか化による認証されたロバスト性は、スムーズ化された分類器の予測が与えられた入力の周りの$ell$-ball内では変化しないという確率的保証を与える。
不確実性に基づく拒絶は、しばしば敵の攻撃からモデルを守るために実践的に適用される技法である。
新たなフレームワークは,ネットワークアーキテクチャや不確実性評価の体系的な評価を可能にすることを実証する。
論文 参考訳(メタデータ) (2024-10-27T13:07:43Z) - Cost-Sensitive Uncertainty-Based Failure Recognition for Object Detection [1.8990839669542954]
本稿では,ユーザ定義予算に合わせて,オブジェクト検出のためのコスト感受性フレームワークを提案する。
性能劣化を防ぐために最低限の閾値設定要件を導出する。
エラー認識率を最大化するために、しきい値処理の自動化と最適化を行う。
論文 参考訳(メタデータ) (2024-04-26T14:03:55Z) - Revisiting Confidence Estimation: Towards Reliable Failure Prediction [53.79160907725975]
多くの信頼度推定法は誤分類誤りを検出するのに有害である。
本稿では, 最先端の故障予測性能を示す平坦な最小値を求めることにより, 信頼性ギャップを拡大することを提案する。
論文 参考訳(メタデータ) (2024-03-05T11:44:14Z) - Extreme Miscalibration and the Illusion of Adversarial Robustness [66.29268991629085]
敵の訓練は、しばしばモデルの堅牢性を高めるために使用される。
我々は、この観測されたロバストネスの利得はロバストネスの錯覚(IOR)であることを示した。
我々は,NLPコミュニティに対して,試験時間温度のスケーリングを堅牢性評価に組み込むよう促す。
論文 参考訳(メタデータ) (2024-02-27T13:49:12Z) - Bayesian autoencoders with uncertainty quantification: Towards
trustworthy anomaly detection [78.24964622317634]
本研究では, ベイズオートエンコーダ (BAEs) の定式化により, 全体の異常不確かさを定量化する。
不確実性の質を評価するために,不確実性の予測を拒否するオプションを追加して,異常を分類する作業を検討する。
本実験は,BAEと総異常不確かさが,ベンチマークデータセットと製造用実データセットのセットに与える影響を実証するものである。
論文 参考訳(メタデータ) (2022-02-25T12:20:04Z) - Gradient-Based Quantification of Epistemic Uncertainty for Deep Object
Detectors [8.029049649310213]
本稿では,新しい勾配に基づく不確実性指標を導入し,異なる物体検出アーキテクチャについて検討する。
実験では、真の肯定的/偽の正の判別と、結合上の交叉の予測において顕著な改善が示された。
また,モンテカルロのドロップアウト不確実性指標に対する改善や,さまざまな不確実性指標のソースを集約することで,さらなる大幅な向上が期待できる。
論文 参考訳(メタデータ) (2021-07-09T16:04:11Z) - Uncertainty-Aware Deep Calibrated Salient Object Detection [74.58153220370527]
既存のディープニューラルネットワークに基づくサルエントオブジェクト検出(SOD)手法は主に高いネットワーク精度の追求に重点を置いている。
これらの手法は、信頼不均衡問題として知られるネットワーク精度と予測信頼の間のギャップを見落としている。
我々は,不確実性を考慮した深部SODネットワークを導入し,深部SODネットワークの過信を防止するための2つの戦略を提案する。
論文 参考訳(メタデータ) (2020-12-10T23:28:36Z) - Localization Uncertainty Estimation for Anchor-Free Object Detection [48.931731695431374]
アンカーベース物体検出のための既存の不確実性推定手法にはいくつかの制限がある。
アンカーフリー物体検出のためのUADと呼ばれる新しい位置推定不確実性推定手法を提案する。
本手法は,ボックスオフセットの4方向の不確かさを均一に捉え,どの方向が不確実であるかを判断する。
論文 参考訳(メタデータ) (2020-06-28T13:49:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。