論文の概要: Information flow in multilayer perceptrons: an in-depth analysis
- arxiv url: http://arxiv.org/abs/2510.13846v1
- Date: Sat, 11 Oct 2025 19:38:06 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-17 21:15:14.469975
- Title: Information flow in multilayer perceptrons: an in-depth analysis
- Title(参考訳): 多層パーセプトロンにおける情報の流れ:深部解析
- Authors: Giuliano Armano,
- Abstract要約: 多層パーセプトロンの層に沿って情報がどのように流れるかを分析することは、人工ニューラルネットワークの分野で最も重要なトピックである。
情報行列の概念は考案され、最適化戦略のエトロジーを理解するための形式的な枠組みとして使用される。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Analysing how information flows along the layers of a multilayer perceptron is a topic of paramount importance in the field of artificial neural networks. After framing the problem from the point of view of information theory, in this position article a specific investigation is conducted on the way information is processed, with particular reference to the requirements imposed by supervised learning. To this end, the concept of information matrix is devised and then used as formal framework for understanding the aetiology of optimisation strategies and for studying the information flow. The underlying research for this article has also produced several key outcomes: i) the definition of a parametric optimisation strategy, ii) the finding that the optimisation strategy proposed in the information bottleneck framework shares strong similarities with the one derived from the information matrix, and iii) the insight that a multilayer perceptron serves as a kind of "adaptor", meant to process the input according to the given objective.
- Abstract(参考訳): 多層パーセプトロンの層に沿って情報がどのように流れるかを分析することは、人工ニューラルネットワークの分野で最も重要なトピックである。
情報理論の観点から問題をフレーミングした後、特に教師付き学習によって課される要件について、情報処理の仕方に関する具体的な調査を行う。
この目的のために、情報行列の概念を考案し、最適化戦略のエチオロジーを理解し、情報の流れを研究するための形式的な枠組みとして利用する。
この記事の根底にある研究は、いくつかの重要な成果も生み出している。
一 パラメトリック最適化戦略の定義
二 情報ボトルネック枠組みにおいて提案された最適化戦略が、情報マトリックスから派生したものと強い類似点を有すること。
三 多層受容器は、所定の目的に応じて入力を処理するための「アダプタ」の一種として機能するという知見
関連論文リスト
- How do Large Language Models Understand Relevance? A Mechanistic Interpretability Perspective [64.00022624183781]
大規模言語モデル(LLM)は、関連性を評価し、情報検索(IR)タスクをサポートする。
メカニスティック・インタプリタビリティのレンズを用いて,異なるLLMモジュールが関係判断にどのように寄与するかを検討する。
論文 参考訳(メタデータ) (2025-04-10T16:14:55Z) - Enhancing Neural Network Interpretability Through Conductance-Based Information Plane Analysis [0.0]
インフォメーションプレーン(Information Plane)は、ニューラルネットワーク内の情報の流れを分析するための概念的フレームワークである。
本稿では,入力特徴に対する感度尺度であるレイヤコンダクタンスを用いて情報平面解析を強化する手法を提案する。
論文 参考訳(メタデータ) (2024-08-26T23:10:42Z) - Coding for Intelligence from the Perspective of Category [66.14012258680992]
符号化の対象はデータの圧縮と再構成、インテリジェンスである。
最近の傾向は、これらの2つの分野の潜在的均一性を示している。
本稿では,カテゴリ理論の観点から,インテリジェンスのためのコーディングの新たな問題を提案する。
論文 参考訳(メタデータ) (2024-07-01T07:05:44Z) - Deciphering 'What' and 'Where' Visual Pathways from Spectral Clustering of Layer-Distributed Neural Representations [15.59251297818324]
本稿では,ニューラルネットワークのアクティベーションに含まれる情報をグループ化する手法を提案する。
すべてのレイヤの機能を利用して、モデルのどの部分が関連する情報を含んでいるのかを推測する必要をなくします。
論文 参考訳(メタデータ) (2023-12-11T01:20:34Z) - To Compress or Not to Compress- Self-Supervised Learning and Information
Theory: A Review [30.87092042943743]
ディープニューラルネットワークは教師付き学習タスクに優れるが、広範なラベル付きデータの必要性によって制約される。
自己組織化学習は有望な代替手段として登場し、明確なラベルなしでモデルを学習できる。
情報理論、特に情報ボトルネックの原則は、ディープニューラルネットワークの形成において重要な役割を担っている。
論文 参考訳(メタデータ) (2023-04-19T00:33:59Z) - Deep networks for system identification: a Survey [56.34005280792013]
システム識別は、入力出力データから動的システムの数学的記述を学習する。
同定されたモデルの主な目的は、以前の観測から新しいデータを予測することである。
我々は、フィードフォワード、畳み込み、リカレントネットワークなどの文献で一般的に採用されているアーキテクチャについて論じる。
論文 参考訳(メタデータ) (2023-01-30T12:38:31Z) - Variational Distillation for Multi-View Learning [104.17551354374821]
我々は,多視点表現学習における2つの重要な特徴を利用するために,様々な情報ボトルネックを設計する。
厳密な理論的保証の下で,本手法は,観察とセマンティックラベルの内在的相関の把握を可能にする。
論文 参考訳(メタデータ) (2022-06-20T03:09:46Z) - Information-Theoretic Odometry Learning [83.36195426897768]
生体計測推定を目的とした学習動機付け手法のための統合情報理論フレームワークを提案する。
提案フレームワークは情報理論言語の性能評価と理解のためのエレガントなツールを提供する。
論文 参考訳(メタデータ) (2022-03-11T02:37:35Z) - Inter-layer Information Similarity Assessment of Deep Neural Networks
Via Topological Similarity and Persistence Analysis of Data Neighbour
Dynamics [93.4221402881609]
ディープニューラルネットワーク(DNN)による情報構造の定量的解析により、DNNアーキテクチャの理論的性能に関する新たな知見が明らかにされる。
量的情報構造解析のためのLSとIDの戦略に着想を得て, 層間情報類似度評価のための2つの新しい補完手法を提案する。
本研究では,画像データを用いた深層畳み込みニューラルネットワークのアーキテクチャ解析を行い,その効果を実証する。
論文 参考訳(メタデータ) (2020-12-07T15:34:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。