論文の概要: Active Jammer Localization via Acquisition-Aware Path Planning
- arxiv url: http://arxiv.org/abs/2510.14790v1
- Date: Thu, 16 Oct 2025 15:22:24 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-17 21:15:14.921024
- Title: Active Jammer Localization via Acquisition-Aware Path Planning
- Title(参考訳): 獲得を考慮した経路計画によるアクティブジャマーのローカライゼーション
- Authors: Luis González-Gudiño, Mariona Jaramillo-Civill, Pau Closas, Tales Imbiriba,
- Abstract要約: 本稿では,ベイズ最適化と獲得対応経路計画を組み合わせたアクティブなジャムマーローカライゼーションフレームワークを提案する。
我々は、A*アルゴリズムであるA-UCB*を、取得値をトラジェクティブコストに組み込むことで修正し、高獲得計画経路を導いた。
- 参考スコア(独自算出の注目度): 10.211561241281565
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose an active jammer localization framework that combines Bayesian optimization with acquisition-aware path planning. Unlike passive crowdsourced methods, our approach adaptively guides a mobile agent to collect high-utility Received Signal Strength measurements while accounting for urban obstacles and mobility constraints. For this, we modified the A* algorithm, A-UCB*, by incorporating acquisition values into trajectory costs, leading to high-acquisition planned paths. Simulations on realistic urban scenarios show that the proposed method achieves accurate localization with fewer measurements compared to uninformed baselines, demonstrating consistent performance under different environments.
- Abstract(参考訳): 本稿では,ベイズ最適化と獲得対応経路計画を組み合わせたアクティブなジャムマーローカライゼーションフレームワークを提案する。
受動的クラウドソース方式と異なり,提案手法は移動体エージェントを適応的に誘導し,都市障害物や移動性制約を考慮した高能率受信信号強度測定を行う。
そこで我々は,A*アルゴリズムであるA-UCB*を,取得値をトラジェクティブコストに組み込むことで改良し,高獲得計画経路を導いた。
現実的な都市シナリオのシミュレーションにより, 提案手法は, 異なる環境下での一貫した性能を示すとともに, インフォームドベースラインに比べて測定値が少なく, 正確な局所化を実現することを示した。
関連論文リスト
- Efficient Data Representation for Motion Forecasting: A Scene-Specific Trajectory Set Approach [12.335528093380631]
本研究では,異なる状況に合わせたシーン固有の軌跡セットを生成するための新しい手法を提案する。
決定論的ゴールサンプリングアルゴリズムは関連する地図領域を同定する一方,再帰的分布サブサンプリング (RIDS) 法はトラジェクトリの妥当性を高める。
Argoverse 2データセットの実験では、運転エリアコンプライアンスの最大10%の改善が達成されている。
論文 参考訳(メタデータ) (2024-07-30T11:06:39Z) - Residual Chain Prediction for Autonomous Driving Path Planning [5.139918355140954]
残留連鎖損失は損失計算過程を動的に調整し、予測経路点の時間依存性と精度を高める。
我々の研究は、自動運転車の計画コンポーネントに革命をもたらすために、Residual Chain Lossの可能性を浮き彫りにした。
論文 参考訳(メタデータ) (2024-04-08T11:43:40Z) - Integrating Higher-Order Dynamics and Roadway-Compliance into
Constrained ILQR-based Trajectory Planning for Autonomous Vehicles [3.200238632208686]
軌道計画は、自動運転車のグローバルな最適ルートを作成することを目的としている。
既存の自転車キネマティックモデルを用いた実装では、制御可能な軌道は保証できない。
このモデルを、曲率と長手ジャークの1階および2階微分を含む高階項で拡張する。
論文 参考訳(メタデータ) (2023-09-25T22:30:18Z) - Adaptive Experimentation at Scale: A Computational Framework for
Flexible Batches [7.390918770007728]
結果がバッチで測定される少数の実測を含む実例によって動機付けられ,適応駆動型実験フレームワークを開発した。
我々の主な観察は、統計的推論において普遍的な正規近似は適応アルゴリズムの設計を導くことができることである。
論文 参考訳(メタデータ) (2023-03-21T04:17:03Z) - Learning Space Partitions for Path Planning [54.475949279050596]
PlaLaMは2次元ナビゲーションタスクにおける既存の経路計画手法よりも優れており、特に難解な局所最適化の存在下では優れている。
これらは高マルチモーダルな実世界のタスクに移行し、コンパイラフェーズでは最大245%、分子設計では最大0.4の強いベースラインを0-1スケールで上回ります。
論文 参考訳(メタデータ) (2021-06-19T18:06:11Z) - A Deep Reinforcement Learning Approach to Marginalized Importance
Sampling with the Successor Representation [61.740187363451746]
マージナライズド・プライバシ・サンプリング(MIS)は、ターゲットポリシーのステートアクション占有率とサンプリング分布の密度比を測定する。
我々は,MISと深層強化学習のギャップを,目標方針の後継表現から密度比を計算することによって埋める。
我々は,Atari環境とMuJoCo環境に対するアプローチの実証的性能を評価した。
論文 参考訳(メタデータ) (2021-06-12T20:21:38Z) - Scalable Bayesian Inverse Reinforcement Learning [93.27920030279586]
我々はAVRIL(Adroximate Variational Reward Imitation Learning)を紹介する。
本手法は,逆強化学習問題の誤った性質に対処する。
本手法を従来の制御シミュレーションと並行して実際の医療データに適用し,現在の手法の範囲を超えた環境におけるベイズ報酬推論を実証する。
論文 参考訳(メタデータ) (2021-02-12T12:32:02Z) - Path Planning Followed by Kinodynamic Smoothing for Multirotor Aerial
Vehicles (MAVs) [61.94975011711275]
そこで本稿では,RRT*textquotedblrightのテキストを幾何学的にベースとした動き計画手法を提案する。
提案手法では,適応探索空間とステアリング機能を導入したオリジナルのRT*を改良した。
提案手法を様々なシミュレーション環境で検証した。
論文 参考訳(メタデータ) (2020-08-29T09:55:49Z) - Reinforcement Learning for Low-Thrust Trajectory Design of
Interplanetary Missions [77.34726150561087]
本稿では, 惑星間軌道のロバスト設計における強化学習の適用について検討する。
最先端アルゴリズムのオープンソース実装が採用されている。
その結果得られた誘導制御ネットワークは、堅牢な名目的軌道と関連する閉ループ誘導法の両方を提供する。
論文 参考訳(メタデータ) (2020-08-19T15:22:15Z) - Congestion-aware Evacuation Routing using Augmented Reality Devices [96.68280427555808]
複数の目的地間でリアルタイムに個別の避難経路を生成する屋内避難のための渋滞対応ルーティングソリューションを提案する。
建物内の混雑分布をモデル化するために、ユーザエンド拡張現実(AR)デバイスから避難者の位置を集約して、オンザフライで取得した人口密度マップを用いる。
論文 参考訳(メタデータ) (2020-04-25T22:54:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。