論文の概要: Residual Chain Prediction for Autonomous Driving Path Planning
- arxiv url: http://arxiv.org/abs/2404.05423v1
- Date: Mon, 8 Apr 2024 11:43:40 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-09 14:44:37.680253
- Title: Residual Chain Prediction for Autonomous Driving Path Planning
- Title(参考訳): 自律走行経路計画のための残差連鎖予測
- Authors: Liguo Zhou, Yirui Zhou, Huaming Liu, Alois Knoll,
- Abstract要約: 残留連鎖損失は損失計算過程を動的に調整し、予測経路点の時間依存性と精度を高める。
我々の研究は、自動運転車の計画コンポーネントに革命をもたらすために、Residual Chain Lossの可能性を浮き彫りにした。
- 参考スコア(独自算出の注目度): 5.139918355140954
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: In the rapidly evolving field of autonomous driving systems, the refinement of path planning algorithms is paramount for navigating vehicles through dynamic environments, particularly in complex urban scenarios. Traditional path planning algorithms, which are heavily reliant on static rules and manually defined parameters, often fall short in such contexts, highlighting the need for more adaptive, learning-based approaches. Among these, behavior cloning emerges as a noteworthy strategy for its simplicity and efficiency, especially within the realm of end-to-end path planning. However, behavior cloning faces challenges, such as covariate shift when employing traditional Manhattan distance as the metric. Addressing this, our study introduces the novel concept of Residual Chain Loss. Residual Chain Loss dynamically adjusts the loss calculation process to enhance the temporal dependency and accuracy of predicted path points, significantly improving the model's performance without additional computational overhead. Through testing on the nuScenes dataset, we underscore the method's substantial advancements in addressing covariate shift, facilitating dynamic loss adjustments, and ensuring seamless integration with end-to-end path planning frameworks. Our findings highlight the potential of Residual Chain Loss to revolutionize planning component of autonomous driving systems, marking a significant step forward in the quest for level 5 autonomous driving system.
- Abstract(参考訳): 自律運転システムの急速に発展する分野において、経路計画アルゴリズムの洗練は、特に複雑な都市シナリオにおいて、動的環境を通って車両をナビゲートするための最重要課題である。
静的なルールや手動で定義されたパラメータに強く依存する従来のパス計画アルゴリズムは、このようなコンテキストでは不足することが多く、より適応的で学習ベースのアプローチの必要性を強調している。
これらのうち、行動のクローン化は、そのシンプルさと効率性、特にエンドツーエンドの経路計画の領域で注目すべき戦略として現れます。
しかし、行動クローニングは、伝統的なマンハッタン距離をメートル法として利用する場合の共変量シフトのような課題に直面している。
そこで本研究では,Residual Chain Lossという新しい概念を紹介した。
残余連鎖損失は損失計算過程を動的に調整し、予測された経路点の時間依存性と精度を高め、計算オーバーヘッドを伴わずにモデルの性能を大幅に改善する。
nuScenesデータセットのテストを通じて、共変量シフトへの対処、ダイナミックな損失調整の容易化、エンドツーエンドのパス計画フレームワークとのシームレスな統合の確保において、メソッドの大幅な進歩を強調します。
我々の発見は、自動運転車の計画コンポーネントに革命をもたらすために、Residual Chain Lossの可能性を浮き彫りにしている。
関連論文リスト
- DiFSD: Ego-Centric Fully Sparse Paradigm with Uncertainty Denoising and Iterative Refinement for Efficient End-to-End Self-Driving [55.53171248839489]
我々は、エンドツーエンドの自動運転のためのエゴ中心の完全スパースパラダイムであるDiFSDを提案する。
特に、DiFSDは主にスパース知覚、階層的相互作用、反復的な運動プランナーから構成される。
nuScenesとBench2Driveデータセットで実施された実験は、DiFSDの優れた計画性能と優れた効率を実証している。
論文 参考訳(メタデータ) (2024-09-15T15:55:24Z) - CGD: Constraint-Guided Diffusion Policies for UAV Trajectory Planning [26.10588918124538]
計算時間を短縮するために成功した戦略は、Imitation Learning (IL)を使用して専門家から高速ニューラルネットワーク(NN)ポリシーを開発することである。
結果のNNポリシは,専門家と同様のトラジェクトリを高速に生成する上で有効だが,その出力は動的実現可能性を明確に考慮していない。
本稿では,トラジェクトリ計画のための新しいILベースのアプローチであるConstraint-Guided Diffusion (CGD)を提案する。
論文 参考訳(メタデータ) (2024-05-02T21:50:26Z) - Large-Scale OD Matrix Estimation with A Deep Learning Method [70.78575952309023]
提案手法は,ディープラーニングと数値最適化アルゴリズムを統合し,行列構造を推論し,数値最適化を導出する。
大規模合成データセットを用いて,提案手法の優れた一般化性能を実証するために実験を行った。
論文 参考訳(メタデータ) (2023-10-09T14:30:06Z) - Integrating Higher-Order Dynamics and Roadway-Compliance into
Constrained ILQR-based Trajectory Planning for Autonomous Vehicles [3.200238632208686]
軌道計画は、自動運転車のグローバルな最適ルートを作成することを目的としている。
既存の自転車キネマティックモデルを用いた実装では、制御可能な軌道は保証できない。
このモデルを、曲率と長手ジャークの1階および2階微分を含む高階項で拡張する。
論文 参考訳(メタデータ) (2023-09-25T22:30:18Z) - Traj-MAE: Masked Autoencoders for Trajectory Prediction [69.7885837428344]
軌道予測は、危険を予測して信頼性の高い自動運転システムを構築する上で重要な課題である。
本稿では,運転環境におけるエージェントの複雑な動作をよりよく表現する,軌道予測のための効率的なマスク付きオートエンコーダを提案する。
複数エージェント設定と単一エージェント設定の両方の実験結果から,Traj-MAEが最先端手法と競合する結果が得られることが示された。
論文 参考訳(メタデータ) (2023-03-12T16:23:27Z) - Real-time Cooperative Vehicle Coordination at Unsignalized Road
Intersections [7.860567520771493]
信号のない道路交差点での協調作業は、連結車両と自動車両の安全運転交通スループットを向上させることを目的としている。
我々はモデルフリーなマルコフ決定プロセス(MDP)を導入し、深層強化学習フレームワークにおける双遅延Deep Deterministic Policy(TD3)に基づく戦略によりそれに取り組む。
提案手法は, 準定常調整シナリオにおいて, ほぼ最適性能を達成し, 現実的な連続流れの制御を大幅に改善できることが示唆された。
論文 参考訳(メタデータ) (2022-05-03T02:56:02Z) - Non-stationary Online Learning with Memory and Non-stochastic Control [71.14503310914799]
我々は,過去の決定に依拠する損失関数を許容するメモリを用いたオンライン凸最適化(OCO)の問題について検討する。
本稿では,非定常環境に対してロバストなアルゴリズムを設計するための性能指標として,動的ポリシーの後悔を紹介する。
我々は,時間的地平線,非定常度,メモリ長といった面で,最適な動的ポリシーの後悔を確実に享受するメモリ付きOCOの新しいアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-02-07T09:45:15Z) - An End-to-end Deep Reinforcement Learning Approach for the Long-term
Short-term Planning on the Frenet Space [0.0]
本稿では,自動運転車の意思決定と動作計画に向けた,エンドツーエンドの継続的強化学習手法を提案する。
初めて、Frenet空間上の状態と行動空間の両方を定義して、走行挙動を道路曲率に変化させないようにする。
このアルゴリズムは、フィードバックコントローラが追跡するFrenetフレーム上で連続時間軌道を生成する。
論文 参考訳(メタデータ) (2020-11-26T02:40:07Z) - Trajectory Planning for Autonomous Vehicles Using Hierarchical
Reinforcement Learning [21.500697097095408]
不確実かつ動的条件下で安全な軌道を計画することは、自律運転問題を著しく複雑にする。
RRT(Rapidly Exploring Random Trees)のような現在のサンプリングベース手法は、高い計算コストのため、この問題には理想的ではない。
軌道計画のための階層型強化学習構造とPID(Proportional-Integral-Derivative)コントローラを提案する。
論文 参考訳(メタデータ) (2020-11-09T20:49:54Z) - Short-Term Memory Optimization in Recurrent Neural Networks by
Autoencoder-based Initialization [79.42778415729475]
線形オートエンコーダを用いた列列の明示的暗記に基づく代替解を提案する。
このような事前学習が、長いシーケンスで難しい分類タスクを解くのにどのように役立つかを示す。
提案手法は, 長周期の復元誤差をはるかに小さくし, 微調整時の勾配伝播を良くすることを示す。
論文 参考訳(メタデータ) (2020-11-05T14:57:16Z) - The Importance of Prior Knowledge in Precise Multimodal Prediction [71.74884391209955]
道路にはよく定義された地形、地形、交通規則がある。
本稿では,構造的事前を損失関数として組み込むことを提案する。
実世界の自動運転データセットにおけるアプローチの有効性を実証する。
論文 参考訳(メタデータ) (2020-06-04T03:56:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。