論文の概要: Operator Flow Matching for Timeseries Forecasting
- arxiv url: http://arxiv.org/abs/2510.15101v1
- Date: Thu, 16 Oct 2025 19:40:56 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-20 20:17:34.369125
- Title: Operator Flow Matching for Timeseries Forecasting
- Title(参考訳): 時系列予測のためのオペレータフローマッチング
- Authors: Yolanne Yi Ran Lee, Kyriakos Flouris,
- Abstract要約: 既存の自己回帰と拡散に基づくアプローチは、長い、物理的に一貫した予測を制限する累積誤差や離散化アーチファクトに悩まされることが多い。
本研究では、FNO誤差の上限を証明し、チャネル折り畳みによるスパース条件付けを利用した潜時流マッチングモデルであるTempOを提案する。
- 参考スコア(独自算出の注目度): 2.406359246841227
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Forecasting high-dimensional, PDE-governed dynamics remains a core challenge for generative modeling. Existing autoregressive and diffusion-based approaches often suffer cumulative errors and discretisation artifacts that limit long, physically consistent forecasts. Flow matching offers a natural alternative, enabling efficient, deterministic sampling. We prove an upper bound on FNO approximation error and propose TempO, a latent flow matching model leveraging sparse conditioning with channel folding to efficiently process 3D spatiotemporal fields using time-conditioned Fourier layers to capture multi-scale modes with high fidelity. TempO outperforms state-of-the-art baselines across three benchmark PDE datasets, and spectral analysis further demonstrates superior recovery of multi-scale dynamics, while efficiency studies highlight its parameter- and memory-light design compared to attention-based or convolutional regressors.
- Abstract(参考訳): 高次元の PDE-governed dynamics を予測することは、生成モデリングにおける中心的な課題である。
既存の自己回帰と拡散に基づくアプローチは、長い、物理的に一貫した予測を制限する累積誤差や離散化アーチファクトに悩まされることが多い。
フローマッチングは自然な代替手段を提供し、効率的で決定論的サンプリングを可能にする。
我々はFNO近似誤差の上限を証明し、チャネル折り畳みによるスパース条件を利用した潜時流マッチングモデルであるTempOを提案し、時間条件のフーリエ層を用いて3次元時空場を効率的に処理し、高忠実度でマルチスケールモードを捕捉する。
TempOは3つのベンチマークPDEデータセットで最先端のベースラインを上回り、スペクトル分析によりマルチスケールのダイナミクスの回復がさらに優れていることが示される。
関連論文リスト
- Solving Inverse Problems with FLAIR [68.87167940623318]
本稿では,フローベース生成モデルを逆問題に先立って活用する学習自由変分フレームワークFLAIRを提案する。
標準画像ベンチマークの結果、FLAIRは再現性やサンプルの多様性の観点から、既存の拡散法や流れ法よりも一貫して優れていることが示された。
論文 参考訳(メタデータ) (2025-06-03T09:29:47Z) - Inference-Time Scaling for Flow Models via Stochastic Generation and Rollover Budget Forcing [10.542645300983878]
本稿では,事前学習した流れモデルに対する推論時間スケーリング手法を提案する。
本稿では,SDE に基づく生成,特に分散保存型 (VP) 補間型 (VP) 生成は,フローモデルにおける推論時間スケーリングのための粒子サンプリング法を改善することを示す。
論文 参考訳(メタデータ) (2025-03-25T06:30:45Z) - Trajectory Flow Matching with Applications to Clinical Time Series Modeling [77.58277281319253]
Trajectory Flow Matching (TFM) は、シミュレーションのない方法でニューラルSDEを訓練し、ダイナミックスを通してバックプロパゲーションをバイパスする。
絶対的性能と不確実性予測の観点から,3つの臨床時系列データセットの性能向上を実証した。
論文 参考訳(メタデータ) (2024-10-28T15:54:50Z) - Generative Time Series Forecasting with Diffusion, Denoise, and
Disentanglement [51.55157852647306]
時系列予測は多くのアプリケーションにおいて非常に重要な課題である。
実世界の時系列データが短時間に記録されることが一般的であり、これはディープモデルと限られたノイズのある時系列との間に大きなギャップをもたらす。
本稿では,生成モデルを用いた時系列予測問題に対処し,拡散,雑音,ゆがみを備えた双方向変分自動エンコーダを提案する。
論文 参考訳(メタデータ) (2023-01-08T12:20:46Z) - Towards Long-Term Time-Series Forecasting: Feature, Pattern, and
Distribution [57.71199089609161]
長期的時系列予測(LTTF)は、風力発電計画など、多くのアプリケーションで需要が高まっている。
トランスフォーマーモデルは、高い計算自己認識機構のため、高い予測能力を提供するために採用されている。
LTTFの既存の手法を3つの面で区別する,Conformer という,効率的なTransformer ベースモデルを提案する。
論文 参考訳(メタデータ) (2023-01-05T13:59:29Z) - Gait Recognition in the Wild with Multi-hop Temporal Switch [81.35245014397759]
野生での歩行認識は、より実践的な問題であり、マルチメディアとコンピュータビジョンのコミュニティの注目を集めています。
本稿では,現実のシーンにおける歩行パターンの効果的な時間的モデリングを実現するために,新しいマルチホップ時間スイッチ方式を提案する。
論文 参考訳(メタデータ) (2022-09-01T10:46:09Z) - Deep Switching Auto-Regressive Factorization:Application to Time Series
Forecasting [16.934920617960085]
DSARFは、時間依存重みと空間依存因子の間の積変数による高次元データを近似する。
DSARFは、深い切替ベクトル自己回帰因子化の観点から重みをパラメータ化するという最先端技術とは異なる。
本実験は, 最先端手法と比較して, DSARFの長期的, 短期的予測誤差において優れた性能を示すものである。
論文 参考訳(メタデータ) (2020-09-10T20:15:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。