論文の概要: Nauplius Optimisation for Autonomous Hydrodynamics
- arxiv url: http://arxiv.org/abs/2510.15350v1
- Date: Fri, 17 Oct 2025 06:30:19 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-20 20:17:34.495713
- Title: Nauplius Optimisation for Autonomous Hydrodynamics
- Title(参考訳): 自律流体力学におけるナウプリウス最適化
- Authors: Shyalan Ramesh, Scott Mann, Alex Stumpf,
- Abstract要約: NOAHは自然に着想を得た新しいSwarm最適化アルゴリズムである。
これは、現在認識されているドリフト、永続的なセンシングノードにおける不可逆的な解決、およびコロニーベースの通信を組み合わせる。
検証研究は 永続的なアンカーシナリオで 86%の成功率を示します
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Autonomous Underwater vehicles must operate in strong currents, limited acoustic bandwidth, and persistent sensing requirements where conventional swarm optimisation methods are unreliable. This paper presents NOAH, a novel nature-inspired swarm optimisation algorithm that combines current-aware drift, irreversible settlement in persistent sensing nodes, and colony-based communication. Drawing inspiration from the behaviour of barnacle nauplii, NOAH addresses the critical limitations of existing swarm algorithms by providing hydrodynamic awareness, irreversible anchoring mechanisms, and colony-based communication capabilities essential for underwater exploration missions. The algorithm establishes a comprehensive foundation for scalable and energy-efficient underwater swarm robotics with validated performance analysis. Validation studies demonstrate an 86% success rate for permanent anchoring scenarios, providing a unified formulation for hydrodynamic constraints and irreversible settlement behaviours with an empirical study under flow.
- Abstract(参考訳): 自律型水中車両は、従来のSwarm最適化手法が信頼性に欠ける強い電流、限られた音響帯域幅、持続的な検知要件で運用されなければならない。
本稿では,現在認識されているドリフト,永続的な知覚ノードにおける不可逆的解決,コロニーベースの通信を組み合わせた,自然に着想を得た新しい群最適化アルゴリズムNOAHを提案する。
バルナクル・ナウプリイの行動からインスピレーションを得たNOAHは、水中探査ミッションに不可欠な流体力学的認識、不可逆的なアンカー機構、コロニーベースの通信能力を提供することにより、既存のSwarmアルゴリズムの限界に対処する。
このアルゴリズムは、スケーラブルでエネルギー効率のよい水中群ロボットのための総合的な基盤を確立し、性能解析を検証した。
検証研究は、永続的なアンカーシナリオに対して86%の成功率を示し、流体力学的制約に対する統一的な定式化と、流動下での実験的研究による不可逆的な入植行動を提供する。
関連論文リスト
- Active Test-time Vision-Language Navigation [60.69722522420299]
ATENAは、不確実なナビゲーション結果に対するエピソードフィードバックを通じて、実用的な人間とロボットのインタラクションを可能にする、テスト時のアクティブな学習フレームワークである。
特にATENAは、成功エピソードにおける確実性を高め、失敗エピソードにおいてそれを減らすことを学び、不確実性の校正を改善している。
さらに,自信ある予測に基づいて,エージェントがナビゲーション結果を評価することができる自己学習戦略を提案する。
論文 参考訳(メタデータ) (2025-06-07T02:24:44Z) - Efficient Test-time Adaptive Object Detection via Sensitivity-Guided Pruning [73.40364018029673]
連続的なテスト時間適応オブジェクト検出(CTTA-OD)は、源となる事前訓練された検出器を常に変化する環境にオンライン適応させることを目的としている。
私たちのモチベーションは、学習したすべての特徴が有益であるとは限らないという観察に起因しています。
FLOPの計算オーバヘッドを12%削減し,優れた適応性を実現する。
論文 参考訳(メタデータ) (2025-06-03T05:27:56Z) - DORAEMON: Decentralized Ontology-aware Reliable Agent with Enhanced Memory Oriented Navigation [55.888688171010365]
DORAEMONは、人間のナビゲーション機能を模倣したVentralとDorsal Streamsで構成される、認知にインスパイアされたフレームワークである。
我々は,DORAEMONをHM3D,MP3D,GOATのデータセット上で評価し,成功率(SR)と成功度(SPL)の測定値の両方で最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2025-05-28T04:46:13Z) - AI-Enhanced Automatic Design of Efficient Underwater Gliders [60.45821679800442]
自動設計フレームワークの構築は、グライダー形状を表現する複雑さと、複雑な固体-流体相互作用をモデル化する際の計算コストが高いため、困難である。
非自明な船体形状の水中ロボットを作れるようにすることで、これらの制限を克服するAI強化型自動計算フレームワークを導入する。
提案手法は, 形状と制御信号の両面を協調的に最適化するアルゴリズムで, 低次幾何表現と微分可能なニューラルネット型流体代理モデルを用いる。
論文 参考訳(メタデータ) (2025-04-30T23:55:44Z) - Generative emulation of chaotic dynamics with coherent prior [0.129182926254119]
拡散モデルを用いて乱流の原理を統一した動的エミュレーションのための効率的な生成フレームワークを提案する。
具体的には,デノナイジング過程の指導として,基礎となる力学の大規模コヒーレント構造を推定する。
結合性に優れた長距離予測技術は、部分的に観察されたガイダンスが存在する場合でも、物理的に一貫性のあるシミュレーションを効率的に生成することができる。
論文 参考訳(メタデータ) (2025-04-19T11:14:40Z) - Generalizable Implicit Neural Representations via Parameterized Latent Dynamics for Baroclinic Ocean Forecasting [15.223198342339803]
PINRODは、動的に認識される暗黙のニューラル表現とパラメータ化されたニューラル常微分方程式を組み合わせた新しいフレームワークである。
海洋中規模パラメトリック活動の実験は、既存のベースラインよりも精度が高い。
論文 参考訳(メタデータ) (2025-03-27T15:04:52Z) - AI-Driven Reinvention of Hydrological Modeling for Accurate Predictions and Interpretation to Transform Earth System Modeling [19.028024402759467]
HydroTraceは、ストリームフローを予測するアルゴリズム駆動のデータに依存しないモデルである。
ナッシュ・サトクリフ効率は98%に達し、目に見えないデータに対して強い一般化を示す。
論文 参考訳(メタデータ) (2025-01-07T18:59:53Z) - Deep-Sea A*+: An Advanced Path Planning Method Integrating Enhanced A* and Dynamic Window Approach for Autonomous Underwater Vehicles [1.3807821497779342]
深海環境における極度の環境は、水中での作戦に重大な課題をもたらす。
改良されたA*アルゴリズムと動的ウィンドウアプローチ(DWA)を統合した高度な経路計画手法を提案する。
提案手法は,経路の滑らかさ,障害物回避,リアルタイム性能の観点から,従来のA*アルゴリズムを超越した手法である。
論文 参考訳(メタデータ) (2024-10-22T07:29:05Z) - Benchmarking Safe Deep Reinforcement Learning in Aquatic Navigation [78.17108227614928]
本研究では,水文ナビゲーションに着目した安全強化学習のためのベンチマーク環境を提案する。
価値に基づく政策段階の深層強化学習(DRL)について考察する。
また,学習したモデルの振る舞いを所望の特性の集合上で検証する検証戦略を提案する。
論文 参考訳(メタデータ) (2021-12-16T16:53:56Z) - Learning swimming escape patterns under energy constraints [6.014777261874645]
流れシミュレーションは、天然の幼生スイマーで観察されたものと一致する脱出パターンを特定した。
エネルギー制約下でスイマー脱出パターンを発見するために強化学習を展開する。
論文 参考訳(メタデータ) (2021-05-03T11:58:37Z) - Robust Reinforcement Learning with Wasserstein Constraint [49.86490922809473]
最適なロバストなポリシーの存在を示し、摂動に対する感度分析を行い、新しいロバストな学習アルゴリズムを設計する。
提案アルゴリズムの有効性はCart-Pole環境で検証する。
論文 参考訳(メタデータ) (2020-06-01T13:48:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。