論文の概要: Deep-Sea A*+: An Advanced Path Planning Method Integrating Enhanced A* and Dynamic Window Approach for Autonomous Underwater Vehicles
- arxiv url: http://arxiv.org/abs/2410.16762v1
- Date: Tue, 22 Oct 2024 07:29:05 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-23 14:27:50.971488
- Title: Deep-Sea A*+: An Advanced Path Planning Method Integrating Enhanced A* and Dynamic Window Approach for Autonomous Underwater Vehicles
- Title(参考訳): Deep-Sea A*+:自律型水中車両のための強化A*と動的ウィンドウアプローチを統合した経路計画手法
- Authors: Yinyi Lai, Jiaqi Shang, Zenghui Liu, Zheyu Jiang, Yuyang Li, Longchao Chen,
- Abstract要約: 深海環境における極度の環境は、水中での作戦に重大な課題をもたらす。
改良されたA*アルゴリズムと動的ウィンドウアプローチ(DWA)を統合した高度な経路計画手法を提案する。
提案手法は,経路の滑らかさ,障害物回避,リアルタイム性能の観点から,従来のA*アルゴリズムを超越した手法である。
- 参考スコア(独自算出の注目度): 1.3807821497779342
- License:
- Abstract: As terrestrial resources become increasingly depleted, the demand for deep-sea resource exploration has intensified. However, the extreme conditions in the deep-sea environment pose significant challenges for underwater operations, necessitating the development of robust detection robots. In this paper, we propose an advanced path planning methodology that integrates an improved A* algorithm with the Dynamic Window Approach (DWA). By optimizing the search direction of the traditional A* algorithm and introducing an enhanced evaluation function, our improved A* algorithm accelerates path searching and reduces computational load. Additionally, the path-smoothing process has been refined to improve continuity and smoothness, minimizing sharp turns. This method also integrates global path planning with local dynamic obstacle avoidance via DWA, improving the real-time response of underwater robots in dynamic environments. Simulation results demonstrate that our proposed method surpasses the traditional A* algorithm in terms of path smoothness, obstacle avoidance, and real-time performance. The robustness of this approach in complex environments with both static and dynamic obstacles highlights its potential in autonomous underwater vehicle (AUV) navigation and obstacle avoidance.
- Abstract(参考訳): 陸域資源の枯渇が進み、深海資源探査への需要が高まっている。
しかし、深海環境の極端な条件は水中での作業に重大な課題をもたらし、ロバストな検出ロボットの開発を必要としている。
本稿では,改良されたA*アルゴリズムと動的ウィンドウアプローチ(DWA)を統合した高度な経路計画手法を提案する。
従来のA*アルゴリズムの探索方向を最適化し、改良された評価関数を導入することにより、改良されたA*アルゴリズムは経路探索を加速し、計算負荷を削減する。
さらに、経路平滑化プロセスは、連続性と滑らか性を改善するために洗練され、シャープな旋回が最小化されている。
また,DWAによる局所的動的障害物回避とグローバルパス計画を統合し,動的環境下での水中ロボットのリアルタイム応答を改善した。
シミュレーションの結果,提案手法は経路のスムーズさ,障害物回避,実時間性能の点で従来のA*アルゴリズムを上回ることがわかった。
静的障害物と動的障害物の両方を持つ複雑な環境でのこのアプローチの堅牢性は、自律型水中車両(AUV)のナビゲーションと障害物回避の可能性を浮き彫りにしている。
関連論文リスト
- Evaluating Robustness of Reinforcement Learning Algorithms for Autonomous Shipping [2.9109581496560044]
本稿では,自律型海運シミュレータにおける内陸水路輸送(IWT)のために実装されたベンチマークディープ強化学習(RL)アルゴリズムのロバスト性について検討する。
モデルのないアプローチはシミュレーターで適切なポリシーを達成でき、訓練中に遭遇したことのないポート環境をナビゲートすることに成功した。
論文 参考訳(メタデータ) (2024-11-07T17:55:07Z) - SHANGUS: Deep Reinforcement Learning Meets Heuristic Optimization for Speedy Frontier-Based Exploration of Autonomous Vehicles in Unknown Spaces [1.8749305679160366]
SHANGUSは、Deep Reinforcement Learning(DRL)と最適化を組み合わせたフレームワークで、フロンティアベースの探索効率を改善する。
このフレームワークは、産業自動化、自律運転、家庭用ロボット工学、宇宙探査などの分野におけるリアルタイムの自律ナビゲーションに適している。
論文 参考訳(メタデータ) (2024-07-26T17:42:18Z) - Aquatic Navigation: A Challenging Benchmark for Deep Reinforcement Learning [53.3760591018817]
ゲームエンジンとDeep Reinforcement Learningの統合の最近の進歩を利用して,水上ナビゲーションのための新しいベンチマーク環境を提案する。
具体的には、最も広く受け入れられているアルゴリズムの一つであるPPOに着目し、先進的なトレーニング手法を提案する。
実験により,これらの成分をうまく組み合わせることで,有望な結果が得られることが示された。
論文 参考訳(メタデータ) (2024-05-30T23:20:23Z) - CCE: Sample Efficient Sparse Reward Policy Learning for Robotic Navigation via Confidence-Controlled Exploration [72.24964965882783]
CCE (Confidence-Controlled Exploration) は、ロボットナビゲーションのようなスパース報酬設定のための強化学習アルゴリズムのトレーニングサンプル効率を高めるために設計された。
CCEは、勾配推定と政策エントロピーの間の新しい関係に基づいている。
我々は、CCEが一定軌跡長とエントロピー正規化を用いる従来の手法より優れるシミュレーションおよび実世界の実験を通して実証する。
論文 参考訳(メタデータ) (2023-06-09T18:45:15Z) - Learning Robust Policy against Disturbance in Transition Dynamics via
State-Conservative Policy Optimization [63.75188254377202]
深層強化学習アルゴリズムは、ソースとターゲット環境の相違により、現実世界のタスクでは不十分な処理を行うことができる。
本研究では,前もって乱れをモデル化せずにロバストなポリシーを学習するための,モデルフリーなアクター批判アルゴリズムを提案する。
いくつかのロボット制御タスクの実験では、SCPOは遷移力学の乱れに対する堅牢なポリシーを学習している。
論文 参考訳(メタデータ) (2021-12-20T13:13:05Z) - Reinforcement Learning for Robot Navigation with Adaptive Forward
Simulation Time (AFST) in a Semi-Markov Model [20.91419349793292]
本稿では,この問題を解決するために,半マルコフ決定プロセス (SMDP) と連続的な動作空間を持つDRLベースのナビゲーション手法であるAdaptive Forward Time Simulation (AFST) を提案する。
論文 参考訳(メタデータ) (2021-08-13T10:30:25Z) - XAI-N: Sensor-based Robot Navigation using Expert Policies and Decision
Trees [55.9643422180256]
本稿では,ロボットの密集した動的環境における衝突のない軌道を計算するためのセンサベース学習ナビゲーションアルゴリズムを提案する。
我々のアプローチは、sim2realパラダイムを用いて訓練された深層強化学習に基づくエキスパートポリシーを使用する。
シミュレーション環境でのアルゴリズムの利点を強調し、移動中の歩行者の間でClearpath Jackalロボットをナビゲートする。
論文 参考訳(メタデータ) (2021-04-22T01:33:10Z) - Reinforcement Learning with Fast Stabilization in Linear Dynamical
Systems [91.43582419264763]
未知の安定化線形力学系におけるモデルベース強化学習(RL)について検討する。
本研究では,環境を効果的に探索することで,基盤システムの高速安定化を証明できるアルゴリズムを提案する。
提案アルゴリズムはエージェント環境相互作用の時間ステップで$tildemathcalO(sqrtT)$ regretを達成した。
論文 参考訳(メタデータ) (2020-07-23T23:06:40Z) - Robust Reinforcement Learning with Wasserstein Constraint [49.86490922809473]
最適なロバストなポリシーの存在を示し、摂動に対する感度分析を行い、新しいロバストな学習アルゴリズムを設計する。
提案アルゴリズムの有効性はCart-Pole環境で検証する。
論文 参考訳(メタデータ) (2020-06-01T13:48:59Z) - Using Deep Reinforcement Learning Methods for Autonomous Vessels in 2D
Environments [11.657524999491029]
本研究では,Q-Learningとニューラル表現を組み合わせた深層強化学習を用いて不安定性を回避する。
当社の方法論では,Q-Learningを深く使用して,アジャイル方法論のローリングウェーブプランニングアプローチと組み合わせています。
実験の結果,VVNの長距離ミッションの平均性能は55.31倍に向上した。
論文 参考訳(メタデータ) (2020-03-23T12:58:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。