論文の概要: Lightweight Data-Free Denoising for Detail-Preserving Biomedical Image Restoration
- arxiv url: http://arxiv.org/abs/2510.15611v1
- Date: Fri, 17 Oct 2025 12:59:21 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-20 20:17:34.6251
- Title: Lightweight Data-Free Denoising for Detail-Preserving Biomedical Image Restoration
- Title(参考訳): バイオメディカル画像復元のための軽量データフリーデノイング
- Authors: Tomáš Chobola, Julia A. Schnabel, Tingying Peng,
- Abstract要約: 現在の自己監督型復調技術は目覚ましい結果をもたらすが、実際の応用は計算やメモリの要求によってしばしば制限される。
高速デノイングと高画質画像復元を両立させる超軽量モデルを提案する。
- 参考スコア(独自算出の注目度): 5.07046926436163
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Current self-supervised denoising techniques achieve impressive results, yet their real-world application is frequently constrained by substantial computational and memory demands, necessitating a compromise between inference speed and reconstruction quality. In this paper, we present an ultra-lightweight model that addresses this challenge, achieving both fast denoising and high quality image restoration. Built upon the Noise2Noise training framework-which removes the reliance on clean reference images or explicit noise modeling-we introduce an innovative multistage denoising pipeline named Noise2Detail (N2D). During inference, this approach disrupts the spatial correlations of noise patterns to produce intermediate smooth structures, which are subsequently refined to recapture fine details directly from the noisy input. Extensive testing reveals that Noise2Detail surpasses existing dataset-free techniques in performance, while requiring only a fraction of the computational resources. This combination of efficiency, low computational cost, and data-free approach make it a valuable tool for biomedical imaging, overcoming the challenges of scarce clean training data-due to rare and complex imaging modalities-while enabling fast inference for practical use.
- Abstract(参考訳): 現在の自己監督型復調技術は印象的な結果をもたらすが、実世界の応用は計算とメモリの要求によってしばしば制約され、推論速度と再構成品質の妥協を必要とする。
本稿では,この課題に対処する超軽量モデルを提案する。
noise2Detail (N2D)という名前の革新的なマルチステージデノベーションパイプラインを導入する。
推測において、この手法はノイズパターンの空間的相関を乱し、中間的な滑らかな構造を生成する。
大規模なテストの結果、Noss2Detailは既存のデータセットフリーの手法を上回り、計算リソースのごく一部しか必要としないことがわかった。
この効率性、計算コストの低さ、そしてデータフリーな手法を組み合わせることで、バイオメディカルイメージングにとって貴重なツールとなり、希少で複雑な画像モダリティによるクリーンなトレーニングデータの難しさを克服し、実用のために高速な推論を可能にした。
関連論文リスト
- Dark Noise Diffusion: Noise Synthesis for Low-Light Image Denoising [22.897202020483576]
低照度写真は、限られた光子による信号対雑音比の低い画像を生成する。
ディープラーニングの手法はうまく機能するが、取得には実用的でないペア画像の大規模なデータセットが必要である。
本稿では,低照度雑音の複雑な分布を捉える拡散モデルについて検討する。
論文 参考訳(メタデータ) (2025-03-14T10:16:54Z) - Reconstruct-and-Generate Diffusion Model for Detail-Preserving Image
Denoising [16.43285056788183]
再構成・生成拡散モデル(Reconstruct-and-Generate Diffusion Model, RnG)と呼ばれる新しい手法を提案する。
提案手法は, 再構成型復調ネットワークを利用して, 基礎となるクリーン信号の大半を復元する。
拡散アルゴリズムを用いて残留する高周波の詳細を生成し、視覚的品質を向上させる。
論文 参考訳(メタデータ) (2023-09-19T16:01:20Z) - Realistic Noise Synthesis with Diffusion Models [44.404059914652194]
ディープラーニングモデルには、大規模な実世界のトレーニングデータが必要です。
本稿では,これらの課題に対処するために拡散モデルを用いた新しい実音合成拡散器(RNSD)法を提案する。
論文 参考訳(メタデータ) (2023-05-23T12:56:01Z) - Advancing Unsupervised Low-light Image Enhancement: Noise Estimation, Illumination Interpolation, and Self-Regulation [55.07472635587852]
低光画像強調(LLIE)技術は、画像の詳細の保存とコントラストの強化に顕著な進歩をもたらした。
これらのアプローチは、動的ノイズを効率的に緩和し、様々な低照度シナリオを収容する上で、永続的な課題に直面する。
まず,低照度画像の雑音レベルを迅速かつ高精度に推定する方法を提案する。
次に、照明と入力の一般的な制約を満たすために、Learningable Illumination Interpolator (LII) を考案する。
論文 参考訳(メタデータ) (2023-05-17T13:56:48Z) - Noise2NoiseFlow: Realistic Camera Noise Modeling without Clean Images [35.29066692454865]
本稿では,ノイズモデルとデノイザを同時にトレーニングするためのフレームワークを提案する。
ノイズ/クリーンなペア画像データではなく、ノイズの多いイメージのペアに依存します。
トレーニングされたデノイザーは、教師付きおよび弱教師付きベースラインデノイジングアプローチの両方において、大幅に改善される。
論文 参考訳(メタデータ) (2022-06-02T15:31:40Z) - Physics-based Noise Modeling for Extreme Low-light Photography [63.65570751728917]
CMOS光センサの撮像パイプラインにおけるノイズ統計について検討する。
実雑音構造を正確に特徴付けることのできる包括的ノイズモデルを定式化する。
我々のノイズモデルは、学習に基づく低照度復調アルゴリズムのためのリアルなトレーニングデータを合成するのに利用できる。
論文 参考訳(メタデータ) (2021-08-04T16:36:29Z) - Dual Adversarial Network: Toward Real-world Noise Removal and Noise
Generation [52.75909685172843]
実世界の画像ノイズ除去は、コンピュータビジョンにおける長年の課題である。
本稿では,ノイズ除去およびノイズ発生タスクに対処する新しい統合フレームワークを提案する。
本手法はクリーンノイズ画像対の連成分布を学習する。
論文 参考訳(メタデータ) (2020-07-12T09:16:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。