論文の概要: KS-Net: Multi-layer network model for determining the rotor type from motor parameters in interior PMSMs
- arxiv url: http://arxiv.org/abs/2510.15688v1
- Date: Fri, 17 Oct 2025 14:32:05 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-20 20:17:34.65533
- Title: KS-Net: Multi-layer network model for determining the rotor type from motor parameters in interior PMSMs
- Title(参考訳): KS-Net:内部PMSMのモータパラメータからロータ型を決定する多層ネットワークモデル
- Authors: Kivanc Dogan, Ahmet Orhan,
- Abstract要約: 本研究は,IMMSMのローター形状をデータ駆動手法を用いて高精度に予測できることを示す。
本研究は, モータ設計プロセスの高速化, 自動ロータ識別システムの開発, および工学的応用におけるデータ駆動型故障診断を実現するための基盤となる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The demand for high efficiency and precise control in electric drive systems has led to the widespread adoption of Interior Permanent Magnet Synchronous Motors (IPMSMs). The performance of these motors is significantly influenced by rotor geometry. Traditionally, rotor shape analysis has been conducted using the finite element method (FEM), which involves high computational costs. This study aims to classify the rotor shape (2D type, V type, Nabla type) of IPMSMs using electromagnetic parameters through machine learning-based methods and to demonstrate the applicability of this approach as an alternative to classical methods. In this context, a custom deep learning model, KS-Net, developed by the user, was comparatively evaluated against Cubic SVM, Quadratic SVM, Fine KNN, Cosine KNN, and Fine Tree algorithms. The balanced dataset, consisting of 9,000 samples, was tested using 10-fold cross-validation, and performance metrics such as accuracy, precision, recall, and F1-score were employed. The results indicate that the Cubic SVM and Quadratic SVM algorithms classified all samples flawlessly, achieving 100% accuracy, while the KS-Net model achieved 99.98% accuracy with only two misclassifications, demonstrating competitiveness with classical methods. This study shows that the rotor shape of IPMSMs can be predicted with high accuracy using data-driven approaches, offering a fast and cost-effective alternative to FEM-based analyses. The findings provide a solid foundation for accelerating motor design processes, developing automated rotor identification systems, and enabling data-driven fault diagnosis in engineering applications.
- Abstract(参考訳): 電気駆動システムにおける高効率かつ精密制御の要求により、内部永久磁石同期モータ(IPMSM)が広く採用されている。
これらのモータの性能はローター形状に大きく影響されている。
伝統的に、ローター形状解析は計算コストの高い有限要素法(FEM)を用いて行われている。
本研究の目的は, 電磁パラメータを用いたIPMSMのロータ形状(2D型, V型, Nabla型)の分類と, 従来の手法の代替としての適用性を示すことである。
この文脈では、ユーザが開発したカスタムディープラーニングモデルであるKS-Netが、Cubeic SVM、Quadratic SVM、Fine KNN、Cosine KNN、Fine Treeアルゴリズムに対して比較的評価された。
9000のサンプルからなるバランスのとれたデータセットは10倍のクロスバリデーションを使用してテストされ、精度、精度、リコール、F1スコアなどのパフォーマンス指標が採用された。
結果は、キュービックSVMとクアドラティックSVMのアルゴリズムが全てのサンプルを完璧に分類し、100%の精度を達成する一方で、KS-Netモデルは2つの誤分類のみで99.98%の精度を達成し、古典的な手法との競合性を実証したことを示している。
本研究は, 高速かつコスト効率のよいFEM解析手法を用いて, IPMSMのロータ形状を高精度に予測できることを示す。
本研究は, モータ設計プロセスの高速化, 自動ロータ識別システムの開発, および工学的応用におけるデータ駆動型故障診断を実現するための基盤となる。
関連論文リスト
- AutoML for Multi-Class Anomaly Compensation of Sensor Drift [44.63945828405864]
センサドリフトは、時間とともに機械学習モデルのパフォーマンスを低下させる。
標準クロスバリデーション法はドリフトの不適切な会計によって性能を過大評価する。
本稿では,(1)モデル検証のための新しいセンサドリフト補償学習パラダイム,(2)分類性能の向上とセンサドリフト補償のための自動機械学習(AutoML)技術を提案する。
論文 参考訳(メタデータ) (2025-02-26T14:34:53Z) - Synergistic Development of Perovskite Memristors and Algorithms for Robust Analog Computing [53.77822620185878]
本稿では,ペロブスカイト・メムリスタの製作を同時に最適化し,ロバストなアナログDNNを開発するための相乗的手法を提案する。
BO誘導ノイズインジェクションを利用したトレーニング戦略であるBayesMultiを開発した。
我々の統合されたアプローチは、より深くより広いネットワークでのアナログコンピューティングの使用を可能にし、最大100倍の改善を実現します。
論文 参考訳(メタデータ) (2024-12-03T19:20:08Z) - Predictive Maintenance Model Based on Anomaly Detection in Induction
Motors: A Machine Learning Approach Using Real-Time IoT Data [0.0]
本研究では,ポンプ,圧縮機,ファン,その他の産業機械で使用される誘導電動機の異常検出システムについて紹介する。
我々は、計算コストの低い前処理技術と機械学習(ML)モデルの組み合わせを用いる。
論文 参考訳(メタデータ) (2023-10-15T18:43:45Z) - End-to-End Reinforcement Learning of Koopman Models for Economic Nonlinear Model Predictive Control [45.84205238554709]
本研究では, (e)NMPCの一部として最適性能を示すために, Koopman シュロゲートモデルの強化学習法を提案する。
エンドツーエンドトレーニングモデルは,(e)NMPCにおけるシステム識別を用いてトレーニングしたモデルよりも優れていることを示す。
論文 参考訳(メタデータ) (2023-08-03T10:21:53Z) - Multi-Objective Optimization of Electrical Machines using a Hybrid
Data-and Physics-Driven Approach [0.0]
永久磁石同期機(PMSM)の数値最適化におけるハイブリッドデータおよび物理駆動モデルの適用について述べる。
データ駆動型教師ありトレーニングの後、ディープニューラルネットワーク(DNN)はPMSMの電磁的挙動を特徴付けるメタモデルとして機能する。
これらの中間測度は、必要な重要な性能指標を計算するために、様々な物理モデルで後処理される。
論文 参考訳(メタデータ) (2023-06-15T12:47:56Z) - Support Vector Machine for Determining Euler Angles in an Inertial
Navigation System [55.41644538483948]
本稿では,機械学習(ML)法を用いたMEMSセンサを用いた慣性ナビゲーションシステムの精度向上について論じる。
提案アルゴリズムは,MEMSセンサに典型的なノイズの存在を正しく分類できることを実証した。
論文 参考訳(メタデータ) (2022-12-07T10:01:11Z) - Application of an automated machine learning-genetic algorithm
(AutoML-GA) coupled with computational fluid dynamics simulations for rapid
engine design optimization [0.0]
本研究は,内燃機関のサロゲート最適化のための自動アクティブラーニング手法であるAutoML-GAについて述べる。
遺伝的アルゴリズムを用いて、機械学習サロゲート表面上の設計最適点を特定する。
その結果,AutoML-GAはCFDシミュレーションの少ない精度で最適化できることがわかった。
論文 参考訳(メタデータ) (2021-01-07T17:50:52Z) - Intelligent Road Inspection with Advanced Machine Learning; Hybrid
Prediction Models for Smart Mobility and Transportation Maintenance Systems [1.0773924713784704]
本稿では,インテリジェント道路検査のための新しい機械学習モデルを提案する。
提案モデルでは, 落下重量偏向計(FWD)による表面偏向データを用いて, 舗装条件指数(PCI)の予測を行う。
解析結果は,平均相対誤差(APRE),平均絶対相対誤差(AAPRE),根平均二乗誤差(RMSE),標準誤差(SD)の4つの基準を用いて検証された。
論文 参考訳(メタデータ) (2020-01-18T19:12:51Z) - Data-Driven Permanent Magnet Temperature Estimation in Synchronous
Motors with Supervised Machine Learning [0.0]
自動車用永久磁石同期モータ(PMSM)における磁石温度のモニタリングは難しい課題である。
過熱によりモータの劣化が激しくなり、機械の制御戦略とその設計に高い懸念が生じる。
いくつかの機械学習(ML)モデルは、潜時高ダイナミックな磁力温度分布を予測するタスクにおいて、その推定精度を実証的に評価する。
論文 参考訳(メタデータ) (2020-01-17T11:41:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。