論文の概要: Cavity Duplexer Tuning with 1d Resnet-like Neural Networks
- arxiv url: http://arxiv.org/abs/2510.15796v1
- Date: Fri, 17 Oct 2025 16:16:56 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-20 20:17:34.710152
- Title: Cavity Duplexer Tuning with 1d Resnet-like Neural Networks
- Title(参考訳): 1d Resnetライクニューラルネットワークを用いたキャビティデュプレクサチューニング
- Authors: Anton Raskovalov,
- Abstract要約: 本稿では,大量の調整ネジを付加したキャビティデュプレクサのチューニングを行う機械学習手法を提案する。
テスト後,従来の強化学習手法を廃止し,教師付き学習装置でタスクを再構築した。
外部制御アルゴリズムを備えたニューラルネットワークは、スクリュー毎の4-5回転でデュプレクサのほぼチューニング状態に達することができる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper presents machine learning method for tuning of cavity duplexer with a large amount of adjustment screws. After testing we declined conventional reinforcement learning approach and reformulated our task in the supervised learning setup. The suggested neural network architecture includes 1d ResNet-like backbone and processing of some additional information about S-parameters, like the shape of curve and peaks positions and amplitudes. This neural network with external control algorithm is capable to reach almost the tuned state of the duplexer within 4-5 rotations per screw.
- Abstract(参考訳): 本稿では,大量の調整ネジを付加したキャビティデュプレクサのチューニングを行う機械学習手法を提案する。
テスト後,従来の強化学習手法を廃止し,教師付き学習装置でタスクを再構築した。
提案するニューラルネットワークアーキテクチャには、1d ResNetのようなバックボーンと、曲線の形状やピーク位置や振幅などのSパラメータに関する追加情報処理が含まれている。
外部制御アルゴリズムを備えたニューラルネットワークは、スクリュー毎の4-5回転でデュプレクサのほぼチューニング状態に達することができる。
関連論文リスト
- Neuromorphic Wireless Split Computing with Multi-Level Spikes [69.73249913506042]
ニューロモルフィックコンピューティングは、スパイキングニューラルネットワーク(SNN)を使用して推論タスクを実行する。
スパイクニューロン間で交換される各スパイクに小さなペイロードを埋め込むことで、エネルギー消費を増大させることなく推論精度を高めることができる。
分割コンピューティング — SNNを2つのデバイスに分割する — は、有望なソリューションだ。
本稿では,マルチレベルSNNを用いたニューロモルフィック無線分割コンピューティングアーキテクチャの総合的研究について述べる。
論文 参考訳(メタデータ) (2024-11-07T14:08:35Z) - Tuning the Frequencies: Robust Training for Sinusoidal Neural Networks [1.5124439914522694]
正弦波ネットワークの容量特性を説明する理論的枠組みを導入する。
入力周波数の整数結合として表される多数の新しい周波数を,その層組成によってどのように生成するかを示す。
提案手法はTUNERと呼ばれ, 正弦波INRトレーニングの安定性と収束性を大幅に改善し, より詳細な再建を行った。
論文 参考訳(メタデータ) (2024-07-30T18:24:46Z) - From NeurODEs to AutoencODEs: a mean-field control framework for
width-varying Neural Networks [68.8204255655161]
本稿では,動的に駆動する制御フィールドをベースとした,AutoencODEと呼ばれる新しいタイプの連続時間制御システムを提案する。
損失関数が局所凸な領域では,多くのアーキテクチャが復元可能であることを示す。
論文 参考訳(メタデータ) (2023-07-05T13:26:17Z) - Gradient Descent in Neural Networks as Sequential Learning in RKBS [63.011641517977644]
初期重みの有限近傍にニューラルネットワークの正確な電力系列表現を構築する。
幅にかかわらず、勾配降下によって生成されたトレーニングシーケンスは、正規化された逐次学習によって正確に複製可能であることを証明した。
論文 参考訳(メタデータ) (2023-02-01T03:18:07Z) - Simple initialization and parametrization of sinusoidal networks via
their kernel bandwidth [92.25666446274188]
従来の活性化機能を持つネットワークの代替として、活性化を伴う正弦波ニューラルネットワークが提案されている。
まず,このような正弦波ニューラルネットワークの簡易版を提案する。
次に、ニューラルタンジェントカーネルの観点からこれらのネットワークの挙動を分析し、そのカーネルが調整可能な帯域幅を持つ低域フィルタを近似することを実証する。
論文 参考訳(メタデータ) (2022-11-26T07:41:48Z) - Deep Convolutional Learning-Aided Detector for Generalized Frequency
Division Multiplexing with Index Modulation [0.0]
提案手法は、まずゼロフォース検出器(ZF)を用いて受信信号を前処理し、その後、畳み込みニューラルネットワーク(CNN)と完全連結ニューラルネットワーク(FCNN)からなるニューラルネットワークを用いる。
FCNN部は2つの完全に接続された層しか使用せず、複雑さとBER(bit error rate)パフォーマンスのトレードオフをもたらすことができる。
提案したディープ畳み込みニューラルネットワークに基づく検出・復調方式は,ZF検出器よりも高いBER性能を示し,複雑性が増大することが実証されている。
論文 参考訳(メタデータ) (2022-02-06T22:18:42Z) - LocalDrop: A Hybrid Regularization for Deep Neural Networks [98.30782118441158]
本稿では,ローカルラデマチャー複雑性を用いたニューラルネットワークの正規化のための新しい手法であるLocalDropを提案する。
フルコネクテッドネットワーク(FCN)と畳み込みニューラルネットワーク(CNN)の両方のための新しい正規化機能は、ローカルラデマチャー複雑さの上限提案に基づいて開発されました。
論文 参考訳(メタデータ) (2021-03-01T03:10:11Z) - Connecting Weighted Automata, Tensor Networks and Recurrent Neural
Networks through Spectral Learning [58.14930566993063]
我々は、形式言語と言語学からの重み付き有限オートマトン(WFA)、機械学習で使用されるリカレントニューラルネットワーク、テンソルネットワークの3つのモデル間の接続を提示する。
本稿では,連続ベクトル入力の列上に定義された線形2-RNNに対する最初の証明可能な学習アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-10-19T15:28:00Z) - A transfer learning metamodel using artificial neural networks applied
to natural convection flows in enclosures [0.0]
本研究では, 自然対流流におけるヌッセルト数を予測するために, 伝達学習手法を用いた。
我々は、単一入力特徴(Rayleigh)でニューラルネットワークを訓練し、第2特徴(Prandtl)の効果を取り入れるように拡張した。
論文 参考訳(メタデータ) (2020-08-28T04:51:20Z) - Exploring the Connection Between Binary and Spiking Neural Networks [1.329054857829016]
両立ニューラルネットワークとスパイクニューラルネットワークの訓練における最近のアルゴリズムの進歩を橋渡しする。
極端量子化システムにおけるスパイキングニューラルネットワークのトレーニングは,大規模データセット上でのほぼ完全な精度向上をもたらすことを示す。
論文 参考訳(メタデータ) (2020-02-24T03:46:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。