論文の概要: Registration is a Powerful Rotation-Invariance Learner for 3D Anomaly Detection
- arxiv url: http://arxiv.org/abs/2510.16865v1
- Date: Sun, 19 Oct 2025 14:56:38 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-25 00:56:39.184926
- Title: Registration is a Powerful Rotation-Invariance Learner for 3D Anomaly Detection
- Title(参考訳): レジストレーションは3次元異常検出のための強力な回転不変学習器である
- Authors: Yuyang Yu, Zhengwei Chen, Xuemiao Xu, Lei Zhang, Haoxin Yang, Yongwei Nie, Shengfeng He,
- Abstract要約: ポイントクラウドデータにおける3次元異常検出は、高い信頼性で構造欠陥を特定することを目的として、産業品質管理に不可欠である。
現在のメモリバンクベースの手法は、しばしば一貫性のない特徴変換と限定的な識別能力に悩まされる。
本稿では、ポイントクラウド登録とメモリベース異常検出の目的を統合した、登録による回転不変の特徴抽出フレームワークを提案する。
- 参考スコア(独自算出の注目度): 64.0168648353038
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: 3D anomaly detection in point-cloud data is critical for industrial quality control, aiming to identify structural defects with high reliability. However, current memory bank-based methods often suffer from inconsistent feature transformations and limited discriminative capacity, particularly in capturing local geometric details and achieving rotation invariance. These limitations become more pronounced when registration fails, leading to unreliable detection results. We argue that point-cloud registration plays an essential role not only in aligning geometric structures but also in guiding feature extraction toward rotation-invariant and locally discriminative representations. To this end, we propose a registration-induced, rotation-invariant feature extraction framework that integrates the objectives of point-cloud registration and memory-based anomaly detection. Our key insight is that both tasks rely on modeling local geometric structures and leveraging feature similarity across samples. By embedding feature extraction into the registration learning process, our framework jointly optimizes alignment and representation learning. This integration enables the network to acquire features that are both robust to rotations and highly effective for anomaly detection. Extensive experiments on the Anomaly-ShapeNet and Real3D-AD datasets demonstrate that our method consistently outperforms existing approaches in effectiveness and generalizability.
- Abstract(参考訳): ポイントクラウドデータにおける3次元異常検出は、高い信頼性で構造欠陥を特定することを目的として、産業品質管理に不可欠である。
しかし、現在のメモリバンクベースの手法は、特に局所的な幾何学的詳細を捉え、回転不変性を達成するために、一貫性のない特徴変換と限定的な識別能力に悩まされることが多い。
これらの制限は、登録が失敗するとより顕著になり、信頼性の低い検出結果につながる。
我々は、点雲の登録が幾何学的構造を整列するだけでなく、回転不変および局所的な識別的表現への特徴抽出を導く上でも重要な役割を担っていると論じる。
そこで本研究では、ポイントクラウド登録とメモリベース異常検出の目的を統合した、登録による回転不変の特徴抽出フレームワークを提案する。
私たちのキーとなる洞察は、両方のタスクは局所的な幾何学構造をモデル化し、サンプル間での特徴的類似性を活用することに依存しているということです。
登録学習プロセスに特徴抽出を組み込むことで、アライメントと表現学習を協調的に最適化する。
この統合により、ネットワークは回転に対して堅牢で、異常検出に非常に効果的である機能を取得することができる。
Anomaly-ShapeNetとReal3D-ADデータセットの大規模な実験により、我々の手法は、有効性と一般化性において、既存のアプローチよりも一貫して優れていることが示された。
関連論文リスト
- Cross3DReg: Towards a Large-scale Real-world Cross-source Point Cloud Registration Benchmark [57.42211080221526]
異なるセンサーからのポイントクラウドデータを整列することを目的とした、クロスソースのポイントクラウド登録は、3Dビジョンの基本的なタスクである。
ディープ登録モデルをトレーニングするための大規模な実世界のデータセットが公開されていないことや、複数のセンサーによってキャプチャされたポイントクラウド固有の違いが課題となっている。
現在世界最大のマルチモーダル・クロスソース・クラウド登録データセットであるCross3DRegを構築している。
クロスソース・ポイント・クラウド機能の整合性を高めるために,ビジュアル・ジオメトリ・アテンションガイド付きマッチングモジュールを提案する。
論文 参考訳(メタデータ) (2025-09-08T09:01:13Z) - RDD: Robust Feature Detector and Descriptor using Deformable Transformer [8.01082121187363]
本稿では,新規かつ堅牢なキーポイント検出器/ディスクリプタであるRobust Deformable Detector (RDD)を提案する。
我々は、変形可能な注意が鍵となる位置に焦点を当て、探索空間の複雑さを効果的に減らすことを観察した。
提案手法は,スパースマッチングタスクにおいて,最先端のキーポイント検出/記述手法よりも優れている。
論文 参考訳(メタデータ) (2025-05-12T19:24:45Z) - Spatial regularisation for improved accuracy and interpretability in keypoint-based registration [5.286949071316761]
教師なしキーポイント検出に基づく最近のアプローチは、解釈可能性に非常に有望である。
本稿では,特徴量の空間分布を正規化するための3倍の損失を提案する。
我々の損失は特徴の解釈可能性を大幅に改善し、現在では正確で解剖学的に意味のあるランドマークに対応しています。
論文 参考訳(メタデータ) (2025-03-06T14:48:25Z) - Spatial-Temporal Graph Enhanced DETR Towards Multi-Frame 3D Object Detection [54.041049052843604]
STEMDは,多フレーム3Dオブジェクト検出のためのDETRのようなパラダイムを改良した,新しいエンドツーエンドフレームワークである。
まず、オブジェクト間の空間的相互作用と複雑な時間的依存をモデル化するために、空間的時間的グラフアテンションネットワークを導入する。
最後に、ネットワークが正のクエリと、ベストマッチしない他の非常に類似したクエリを区別することが課題となる。
論文 参考訳(メタデータ) (2023-07-01T13:53:14Z) - AGO-Net: Association-Guided 3D Point Cloud Object Detection Network [86.10213302724085]
ドメイン適応によるオブジェクトの無傷な特徴を関連付ける新しい3D検出フレームワークを提案する。
我々は,KITTIの3D検出ベンチマークにおいて,精度と速度の両面で最新の性能を実現する。
論文 参考訳(メタデータ) (2022-08-24T16:54:38Z) - Self-Supervised Training with Autoencoders for Visual Anomaly Detection [61.62861063776813]
我々は, 正規サンプルの分布を低次元多様体で支持する異常検出において, 特定のユースケースに焦点を当てた。
我々は、訓練中に識別情報を活用する自己指導型学習体制に適応するが、通常の例のサブ多様体に焦点をあてる。
製造領域における視覚異常検出のための挑戦的なベンチマークであるMVTec ADデータセットで、最先端の新たな結果を達成する。
論文 参考訳(メタデータ) (2022-06-23T14:16:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。