論文の概要: Preference Measurement Error, Concentration in Recommendation Systems, and Persuasion
- arxiv url: http://arxiv.org/abs/2510.16972v1
- Date: Sun, 19 Oct 2025 19:19:12 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-25 00:56:39.22785
- Title: Preference Measurement Error, Concentration in Recommendation Systems, and Persuasion
- Title(参考訳): 推奨測定誤差, 勧告システム中の濃度, パース
- Authors: Andreas Haupt,
- Abstract要約: 雑音の選好測定に基づくアルゴリズムレコメンデーションは、レコメンデーションシステムで一般的である。
本稿では、市場集中と不平等に対するこのような勧告がもたらす影響について論じる。
- 参考スコア(独自算出の注目度): 0.05640465626775259
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Algorithmic recommendation based on noisy preference measurement is prevalent in recommendation systems. This paper discusses the consequences of such recommendation on market concentration and inequality. Binary types denoting a statistical majority and minority are noisily revealed through a statistical experiment. The achievable utilities and recommendation shares for the two groups can be analyzed as a Bayesian Persuasion problem. While under arbitrary noise structures, effects on concentration compared to a full-information market are ambiguous, under symmetric noise, concentration increases and consumer welfare becomes more unequal. We define symmetric statistical experiments and analyze persuasion under a restriction to such experiments, which may be of independent interest.
- Abstract(参考訳): 雑音の選好測定に基づくアルゴリズムレコメンデーションは、レコメンデーションシステムで一般的である。
本稿では、市場集中と不平等に対するこのような勧告がもたらす影響について論じる。
統計的な多数派と少数派を示す二項型は統計的実験によって騒々しく明らかにされる。
達成可能なユーティリティと2つのグループのレコメンデーションシェアは、ベイズパースケーション問題として分析することができる。
任意のノイズ構造の下では、全情報市場に対する濃度の影響は曖昧であり、対称雑音下では、濃度増加と消費者福祉はより不平等になる。
我々は、対称な統計的実験を定義し、そのような実験に対する制限の下で説得を解析する。
関連論文リスト
- Practical Improvements of A/B Testing with Off-Policy Estimation [51.25970890274447]
従来の手法よりも分散度を低くする非バイアスのオフ・ポリティクス推定器のファミリーを導入する。
提案手法の有効性と実用性を理論的に検証した。
論文 参考訳(メタデータ) (2025-06-12T13:11:01Z) - Stein's unbiased risk estimate and Hyvärinen's score matching [9.035498732406039]
経験的ベイズでは、主なアプローチは非パラメトリック最大推定(NPMLE)である。
私たちの設定では、Hyv"arinen氏の暗黙のSMは、統計学からの別の古典的アイデアと等価です。
論文 参考訳(メタデータ) (2025-02-27T14:15:05Z) - Be Aware of the Neighborhood Effect: Modeling Selection Bias under Interference [50.95521705711802]
従来の研究では、予測モデルの偏りのない学習を実現するために、選択バイアスに対処することに注力してきた。
本稿では、因果推論の観点から、近隣効果を干渉問題として公式に定式化する。
本稿では,近隣効果の存在下で選択バイアスに対処できる新しい理想的損失を提案する。
論文 参考訳(メタデータ) (2024-04-30T15:20:41Z) - Metrics for popularity bias in dynamic recommender systems [0.0]
バイアスドレコメンデーションは個人、敏感なユーザーグループ、社会に悪影響を及ぼす可能性のある決定につながる可能性がある。
本稿では,RecSysモデルの出力から直接発生する人気バイアスの定量化に着目する。
RescSysにおける人気バイアスを時間とともに定量化するための4つの指標が提案されている。
論文 参考訳(メタデータ) (2023-10-12T16:15:30Z) - On (assessing) the fairness of risk score models [2.0646127669654826]
リスクモデルは、ユーザに対して潜在的な結果について不確実性を伝えるという事実など、さまざまな理由から関心を集めている。
リスクスコアフェアネスの鍵となるデシダータムとして,異なるグループに類似した価値を提供する。
本稿では,従来提案されていた基準値よりも試料径バイアスが少ない新しい校正誤差指標を提案する。
論文 参考訳(メタデータ) (2023-02-17T12:45:51Z) - Mutual Wasserstein Discrepancy Minimization for Sequential
Recommendation [82.0801585843835]
逐次リコメンデーションのためのMutual WasserStein差分最小化MSteinに基づく新しい自己教師型学習フレームワークを提案する。
また,ワッサーシュタイン離散度測定に基づく新しい学習損失を提案する。
論文 参考訳(メタデータ) (2023-01-28T13:38:48Z) - Equal Experience in Recommender Systems [21.298427869586686]
我々は、バイアスデータの存在下で不公平を規制するために、新しい公正の概念(平等な経験と呼ぶ)を導入する。
本稿では、正規化項としての公正性の概念を取り入れた最適化フレームワークを提案し、最適化を解く計算効率の良いアルゴリズムを導入する。
論文 参考訳(メタデータ) (2022-10-12T05:53:05Z) - Information-Theoretic Bias Reduction via Causal View of Spurious
Correlation [71.9123886505321]
本稿では,スプリアス相関の因果的解釈による情報理論バイアス測定手法を提案する。
本稿では,バイアス正規化損失を含むアルゴリズムバイアスに対する新しいデバイアスフレームワークを提案する。
提案したバイアス測定とデバイアス法は、多様な現実シナリオで検証される。
論文 参考訳(メタデータ) (2022-01-10T01:19:31Z) - Unbiased Learning for the Causal Effect of Recommendation [8.849159720632612]
本稿では,推薦の因果効果に対する非バイアス学習フレームワークを提案する。
ランキング尺度の因果効果拡張のための非バイアス学習法を開発した。
論文 参考訳(メタデータ) (2020-08-11T07:30:44Z) - Fairness Evaluation in Presence of Biased Noisy Labels [84.12514975093826]
本稿では,グループ間の雑音の仮定がリスク評価モデルの予測バイアス特性に与える影響を評価するための感度分析フレームワークを提案する。
2つの実世界の刑事司法データセットに関する実験結果は、観測されたラベルの小さなバイアスでさえ、ノイズのある結果に基づく分析結果の結論に疑問を投げかけることができることを示している。
論文 参考訳(メタデータ) (2020-03-30T20:47:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。