論文の概要: KineDiff3D: Kinematic-Aware Diffusion for Category-Level Articulated Object Shape Reconstruction and Generation
- arxiv url: http://arxiv.org/abs/2510.17137v1
- Date: Mon, 20 Oct 2025 04:15:40 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-25 00:56:39.300098
- Title: KineDiff3D: Kinematic-Aware Diffusion for Category-Level Articulated Object Shape Reconstruction and Generation
- Title(参考訳): KineDiff3D: カテゴリーレベル人工物体形状再構成と生成のための運動認識拡散
- Authors: WenBo Xu, Liu Liu, Li Zhang, Ran Zhang, Hao Wu, Dan Guo, Meng Wang,
- Abstract要約: ノートパソコンや引き出しなどのアーティキュレートオブジェクトは、3D再構成とポーズ推定において重要な課題を示す。
そこで我々は, KineDiff3D: Kinematic-Aware Diffusion for Category-Level Articulated Object Shape Reconstruction and Generationを提案する。
- 参考スコア(独自算出の注目度): 28.822034731724013
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Articulated objects, such as laptops and drawers, exhibit significant challenges for 3D reconstruction and pose estimation due to their multi-part geometries and variable joint configurations, which introduce structural diversity across different states. To address these challenges, we propose KineDiff3D: Kinematic-Aware Diffusion for Category-Level Articulated Object Shape Reconstruction and Generation, a unified framework for reconstructing diverse articulated instances and pose estimation from single view input. Specifically, we first encode complete geometry (SDFs), joint angles, and part segmentation into a structured latent space via a novel Kinematic-Aware VAE (KA-VAE). In addition, we employ two conditional diffusion models: one for regressing global pose (SE(3)) and joint parameters, and another for generating the kinematic-aware latent code from partial observations. Finally, we produce an iterative optimization module that bidirectionally refines reconstruction accuracy and kinematic parameters via Chamfer-distance minimization while preserving articulation constraints. Experimental results on synthetic, semi-synthetic, and real-world datasets demonstrate the effectiveness of our approach in accurately reconstructing articulated objects and estimating their kinematic properties.
- Abstract(参考訳): ノートパソコンや引き出しなどのアーティキュレートされた物体は、多部構造と様々な関節構成による3次元再構成とポーズ推定に大きな課題を示し、様々な状態に構造的多様性をもたらす。
これらの課題に対処するために,KineDiff3D: Kinematic-Aware Diffusion for Category-Level Articulated Object Shape Reconstruction and Generationを提案する。
具体的には、まず、新しいKinematic-Aware VAE(KA-VAE)を用いて、完全幾何(SDF)、関節角、部分分割を構造化潜在空間にエンコードする。
さらに,グローバルポーズ(SE(3))とジョイントパラメータの回帰のための条件拡散モデルと,部分的な観測からキネマティック・アウェア・ラテントコードを生成するための条件拡散モデルを用いる。
最後に, 音節制約を保ちながら, チャムファー距離最小化による再現精度と運動パラメータを双方向に改善する反復最適化モジュールを提案する。
合成, 半合成, 実世界のデータセットによる実験結果から, 調音対象を正確に再構成し, 運動特性を推定する手法の有効性が示された。
関連論文リスト
- Self-Supervised Multi-Part Articulated Objects Modeling via Deformable Gaussian Splatting and Progressive Primitive Segmentation [23.18517560629462]
DeGSSは,物体を変形可能な3次元ガウス場として符号化し,幾何学,外観,動きを1つのコンパクト表現に埋め込む統一フレームワークである。
一般化とリアリズムを評価するために、合成PartNet-Mobilityベンチマークを拡張し、RGBキャプチャと正確にリバースエンジニアリングされた3Dモデルを組み合わせたリアル・トゥ・シムデータセットRS-Artをリリースする。
論文 参考訳(メタデータ) (2025-06-11T12:32:16Z) - GTR: Gaussian Splatting Tracking and Reconstruction of Unknown Objects Based on Appearance and Geometric Complexity [49.31257173003408]
モノクローナルRGBDビデオからの6-DoFオブジェクト追跡と高品質な3D再構成のための新しい手法を提案する。
提案手法は, 高忠実度オブジェクトメッシュを復元する強力な能力を示し, オープンワールド環境における単一センサ3D再構成のための新しい標準を策定する。
論文 参考訳(メタデータ) (2025-05-17T08:46:29Z) - Detection Based Part-level Articulated Object Reconstruction from Single RGBD Image [52.11275397911693]
本稿では,1枚のRGBD画像から複数の人工関節オブジェクトを再構成する,エンドツーエンドで訓練可能なクロスカテゴリ手法を提案する。
私たちは、あらかじめ定義された部分数で人工的なオブジェクトに焦点をあて、インスタンスレベルの潜在空間を学習することに依存する以前の作業から離れています。
提案手法は, 従来の作業では処理できない様々な構成された複数インスタンスの再構築に成功し, 形状再構成や運動学推定において, 先行の作業よりも優れていた。
論文 参考訳(メタデータ) (2025-04-04T05:08:04Z) - ArtGS: Building Interactable Replicas of Complex Articulated Objects via Gaussian Splatting [66.29782808719301]
コンピュータビジョンにおいて、音声で表現されたオブジェクトを構築することが重要な課題である。
既存のメソッドは、しばしば異なるオブジェクト状態間で効果的に情報を統合できない。
3次元ガウスを柔軟かつ効率的な表現として活用する新しいアプローチであるArtGSを紹介する。
論文 参考訳(メタデータ) (2025-02-26T10:25:32Z) - REACTO: Reconstructing Articulated Objects from a Single Video [64.89760223391573]
関節の柔軟な変形を維持しつつ各部の剛性を向上する新しい変形モデルを提案する。
提案手法は, 従来よりも高忠実度な3D再構成を実現する上で, 従来の手法よりも優れていた。
論文 参考訳(メタデータ) (2024-04-17T08:01:55Z) - Robust 3D Shape Reconstruction in Zero-Shot from a Single Image in the Wild [22.82439286651921]
本研究では,3次元形状復元に特化して設計された分割と再構成を統合した統合回帰モデルを提案する。
また、オブジェクト、オクローダ、バックグラウンドの幅広いバリエーションをシミュレートするスケーラブルなデータ合成パイプラインも導入しています。
我々の合成データのトレーニングにより,提案モデルは実世界の画像に対して最先端のゼロショット結果が得られる。
論文 参考訳(メタデータ) (2024-03-21T16:40:10Z) - DTF-Net: Category-Level Pose Estimation and Shape Reconstruction via
Deformable Template Field [29.42222066097076]
RGB-Depth画像ペアから、オープンワールドシーンの6Dポーズの推定と3D形状の再構築は困難である。
本稿では,オブジェクトカテゴリの暗黙的ニューラルネットワークに基づくポーズ推定と形状再構成のための新しいフレームワークであるDTF-Netを提案する。
論文 参考訳(メタデータ) (2023-08-04T10:35:40Z) - Unsupervised Learning of 3D Object Categories from Videos in the Wild [75.09720013151247]
オブジェクトインスタンスの大規模なコレクションの複数のビューからモデルを学ぶことに重点を置いています。
再構成を大幅に改善するワープコンディショニングレイ埋め込み(WCR)と呼ばれる新しいニューラルネットワーク設計を提案する。
本評価は,既存のベンチマークを用いた複数の深部単眼再構成ベースラインに対する性能改善を示す。
論文 参考訳(メタデータ) (2021-03-30T17:57:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。