論文の概要: High-Level Multi-Robot Trajectory Planning And Spurious Behavior Detection
- arxiv url: http://arxiv.org/abs/2510.17261v1
- Date: Mon, 20 Oct 2025 07:47:51 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-25 00:56:39.355717
- Title: High-Level Multi-Robot Trajectory Planning And Spurious Behavior Detection
- Title(参考訳): 高レベルマルチロボット軌道計画とスパーラス行動検出
- Authors: Fernando Salanova, Jesús Roche, Cristian Mahuela, Eduardo Montijano,
- Abstract要約: 本稿では,LTL(Linear Temporal Logic)公式として指定された計画の急激な実行を特定することの課題について述べる。
我々はNets-within-Nets(NWN)パラダイムに基づく構造化データ生成フレームワークを提案する。
本稿では,トランスフォーマーを用いた異常検出パイプラインを提案する。
- 参考スコア(独自算出の注目度): 41.75258434978792
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The reliable execution of high-level missions in multi-robot systems with heterogeneous agents, requires robust methods for detecting spurious behaviors. In this paper, we address the challenge of identifying spurious executions of plans specified as a Linear Temporal Logic (LTL) formula, as incorrect task sequences, violations of spatial constraints, timing inconsis- tencies, or deviations from intended mission semantics. To tackle this, we introduce a structured data generation framework based on the Nets-within-Nets (NWN) paradigm, which coordinates robot actions with LTL-derived global mission specifications. We further propose a Transformer-based anomaly detection pipeline that classifies robot trajectories as normal or anomalous. Experi- mental evaluations show that our method achieves high accuracy (91.3%) in identifying execution inefficiencies, and demonstrates robust detection capabilities for core mission violations (88.3%) and constraint-based adaptive anomalies (66.8%). An ablation experiment of the embedding and architecture was carried out, obtaining successful results where our novel proposition performs better than simpler representations.
- Abstract(参考訳): ヘテロジニアスエージェントを用いたマルチロボットシステムにおける高レベルのミッションの信頼性の実行には、スパイラルな振る舞いを検出する堅牢な方法が必要である。
本稿では,LTL(Linear Temporal Logic)公式として指定された計画の急激な実行を,不正確なタスクシーケンス,空間的制約違反,タイミング不一致タイミング,意図されたミッションセマンティクスからの逸脱として識別する課題に対処する。
そこで我々はNets-within-Nets(NWN)パラダイムに基づく構造化データ生成フレームワークを導入する。
さらに,トランスフォーマーを用いた異常検出パイプラインを提案する。
実験的心的評価から,本手法は実行不効率の同定において高い精度(91.3%)を達成し,コアミッション違反(88.3%)および制約に基づく適応異常(66.8%)に対する堅牢な検出能力を示す。
組込みとアーキテクチャのアブレーション実験を行い,提案手法がより単純な表現よりも優れている結果を得た。
関連論文リスト
- SCADE: Scalable Framework for Anomaly Detection in High-Performance System [0.0]
コマンドラインインタフェースは高性能コンピューティング環境に不可欠な存在である。
従来のセキュリティソリューションでは、コンテキスト固有の性質、ラベル付きデータの欠如、LOL(Living-off-the-Land)のような高度な攻撃の頻度による異常の検出に苦労している。
本稿では,グローバル統計モデルと局所的文脈特化分析を組み合わせた拡張型コマンドライン異常検出エンジン(SCADE)について紹介する。
論文 参考訳(メタデータ) (2024-12-05T15:39:13Z) - A Self-Supervised Task for Fault Detection in Satellite Multivariate Time Series [45.31237646796715]
この研究は、複雑な分布と高次元分布をモデル化する能力で有名な物理インフォームドリアルNVPニューラルネットワークを活用する新しいアプローチを提案する。
実験には、セルフスーパービジョンによる事前トレーニング、マルチタスク学習、スタンドアロンのセルフ教師付きトレーニングなど、さまざまな構成が含まれている。
結果は、すべての設定で大幅にパフォーマンスが向上したことを示している。
論文 参考訳(メタデータ) (2024-07-03T07:19:41Z) - Self-supervised Feature Adaptation for 3D Industrial Anomaly Detection [59.41026558455904]
具体的には,大規模ビジュアルデータセット上で事前学習されたモデルを利用した初期のマルチモーダルアプローチについて検討する。
本研究では,アダプタを微調整し,異常検出に向けたタスク指向の表現を学習するためのLSFA法を提案する。
論文 参考訳(メタデータ) (2024-01-06T07:30:41Z) - ADT: Agent-based Dynamic Thresholding for Anomaly Detection [4.356615197661274]
本稿では,エージェントベースの動的しきい値処理(ADT)フレームワークを提案する。
本研究では,自動エンコーダを用いて特徴表現を取得し,複雑な入力データに対する異常スコアを生成する。
ADTはオートエンコーダの異常スコアを利用して閾値を適応的に調整することができる。
論文 参考訳(メタデータ) (2023-12-03T19:07:30Z) - Self-Supervised Training with Autoencoders for Visual Anomaly Detection [61.62861063776813]
我々は, 正規サンプルの分布を低次元多様体で支持する異常検出において, 特定のユースケースに焦点を当てた。
我々は、訓練中に識別情報を活用する自己指導型学習体制に適応するが、通常の例のサブ多様体に焦点をあてる。
製造領域における視覚異常検出のための挑戦的なベンチマークであるMVTec ADデータセットで、最先端の新たな結果を達成する。
論文 参考訳(メタデータ) (2022-06-23T14:16:30Z) - Meta-learning with GANs for anomaly detection, with deployment in
high-speed rail inspection system [7.220842608593749]
ビッグデータによるAI時代における異常検出の主な課題は、潜在的な異常タイプに関する事前知識の欠如である。
本稿では,GAN(Generative Adversarial Network)の概念を,損失関数の適切な選択に取り入れる。
当社のフレームワークは2021年以降、中国の5つの高速鉄道に配備されており、99.7%以上の作業負荷を削減し、96.7%の検査時間を節約している。
論文 参考訳(メタデータ) (2022-02-11T17:43:49Z) - NADS: Neural Architecture Distribution Search for Uncertainty Awareness [79.18710225716791]
機械学習(ML)システムは、トレーニングデータとは異なるディストリビューションから来るテストデータを扱う場合、しばしばOoD(Out-of-Distribution)エラーに遭遇する。
既存のOoD検出アプローチはエラーを起こしやすく、時にはOoDサンプルに高い確率を割り当てることもある。
本稿では,すべての不確実性を考慮したアーキテクチャの共通構築ブロックを特定するために,ニューラルアーキテクチャ分布探索(NADS)を提案する。
論文 参考訳(メタデータ) (2020-06-11T17:39:07Z) - MLE-guided parameter search for task loss minimization in neural
sequence modeling [83.83249536279239]
ニューラル自己回帰シーケンスモデルは、さまざまな自然言語処理(NLP)タスクのシーケンスを生成するために使用される。
本稿では,現在のパラメータとその周辺における乱探索の混合である更新方向の分布から,最大至適勾配の分布をサンプリングする,最大至適誘導パラメータ探索(MGS)を提案する。
以上の結果から,MGS は,機械翻訳における最小リスクトレーニングに比べて,繰り返しや非終端の大幅な削減を図り,シーケンスレベルの損失を最適化できることが示唆された。
論文 参考訳(メタデータ) (2020-06-04T22:21:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。