論文の概要: CausalMamba: Scalable Conditional State Space Models for Neural Causal Inference
- arxiv url: http://arxiv.org/abs/2510.17318v1
- Date: Mon, 20 Oct 2025 09:04:25 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-25 00:56:39.379271
- Title: CausalMamba: Scalable Conditional State Space Models for Neural Causal Inference
- Title(参考訳): CausalMamba: ニューラルネットワークの因果推論のためのスケーラブルな条件付き状態空間モデル
- Authors: Sangyoon Bae, Jiook Cha,
- Abstract要約: 本稿では,fMRIに基づく因果推論の基本的制約に対処するスケーラブルなフレームワークCausalMambaを紹介する。
提案手法は,この複雑な逆問題を,潜在神経活動の回復のためのBOLDデコンボリューションと因果グラフ推論の2段階に分解する。
- 参考スコア(独自算出の注目度): 3.1641441457189496
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce CausalMamba, a scalable framework that addresses fundamental limitations in fMRI-based causal inference: the ill-posed nature of inferring neural causality from hemodynamically distorted BOLD signals and the computational intractability of existing methods like Dynamic Causal Modeling (DCM). Our approach decomposes this complex inverse problem into two tractable stages: BOLD deconvolution to recover latent neural activity, followed by causal graph inference using a novel Conditional Mamba architecture. On simulated data, CausalMamba achieves 37% higher accuracy than DCM. Critically, when applied to real task fMRI data, our method recovers well-established neural pathways with 88% fidelity, whereas conventional approaches fail to identify these canonical circuits in over 99% of subjects. Furthermore, our network analysis of working memory data reveals that the brain strategically shifts its primary causal hub-recruiting executive or salience networks depending on the stimulus-a sophisticated reconfiguration that remains undetected by traditional methods. This work provides neuroscientists with a practical tool for large-scale causal inference that captures both fundamental circuit motifs and flexible network dynamics underlying cognitive function.
- Abstract(参考訳): 本稿では,fMRIに基づく因果推論の基本的制約に対処するスケーラブルなフレームワークであるCausalMambaを紹介する。
提案手法は,この複雑な逆問題を,潜在神経活動の回復のためのBOLDデコンボリューションと,新しい条件マンバアーキテクチャを用いた因果グラフ推論の2段階に分解する。
シミュレーションデータでは、CausalMambaはDCMよりも37%高い精度を実現している。
重要なことは、実タスクfMRIデータに適用した場合、本手法は88%の忠実度で確立された神経経路を復元するが、従来の手法では99%以上の被験者でこれらの標準回路を識別できない。
さらに,作業記憶データのネットワーク解析により,脳は従来手法では検出されなかった刺激-高度な再構成-に基づいて,主要な因果的ハブ・リクルート・エグゼクティブ・サリエンス・ネットワークを戦略的にシフトすることが明らかとなった。
この研究は神経科学者に、基本的な回路モチーフと認知機能に基づくフレキシブルネットワークダイナミクスの両方を捉える、大規模因果推論のための実用的なツールを提供する。
関連論文リスト
- Disentangling Neurodegeneration with Brain Age Gap Prediction Models: A Graph Signal Processing Perspective [89.99666725996975]
脳年齢ギャップ予測(BAGP)モデルは、データから予測される脳年齢と時系列年齢との差を推定する。
本稿では、BAGPの概要と、グラフ信号処理(GSP)の最近の進歩に基づく、このアプリケーションのための原則化されたフレームワークを紹介する。
VNNは強力な理論的基盤と操作的解釈可能性を提供し、脳年齢差予測の堅牢な推定を可能にする。
論文 参考訳(メタデータ) (2025-10-14T17:44:45Z) - Adapting HFMCA to Graph Data: Self-Supervised Learning for Generalizable fMRI Representations [57.054499278843856]
機能的磁気共鳴画像(fMRI)解析は、データセットのサイズが限られ、研究間でのドメインの変動が原因で大きな課題に直面している。
コンピュータビジョンにインスパイアされた従来の自己教師付き学習手法は、正と負のサンプルペアに依存することが多い。
本稿では,最近開発された階層関数最大相関アルゴリズム(HFMCA)をグラフ構造fMRIデータに適用することを提案する。
論文 参考訳(メタデータ) (2025-10-05T12:35:01Z) - Bridging Foundation Models and Efficient Architectures: A Modular Brain Imaging Framework with Local Masking and Pretrained Representation Learning [7.591083752535149]
ファンデーションモデル(FM)の原則を効率よくドメイン固有のアーキテクチャと統合するモジュラーフレームワークを提案する。
平均絶対誤差は, 年齢予測では5.343, 流体知能では2.940, ピアソン相関係数は0.928, 0.887であった。
この研究は、LLMに基づくfMRI分析のアプローチに代わる堅牢で解釈可能な代替手段を提供し、脳の老化と認知機能に関する新たな洞察を提供する。
論文 参考訳(メタデータ) (2025-08-09T08:06:01Z) - BrainMAE: A Region-aware Self-supervised Learning Framework for Brain Signals [11.030708270737964]
本稿では,fMRI時系列データから直接表現を学習するBrain Masked Auto-Encoder(BrainMAE)を提案する。
BrainMAEは、4つの異なる下流タスクにおいて、確立されたベースラインメソッドをかなりのマージンで一貫して上回っている。
論文 参考訳(メタデータ) (2024-06-24T19:16:24Z) - Interpretable Spatio-Temporal Embedding for Brain Structural-Effective Network with Ordinary Differential Equation [56.34634121544929]
本研究では,まず動的因果モデルを用いて脳効果ネットワークを構築する。
次に、STE-ODE(Spatio-Temporal Embedding ODE)と呼ばれる解釈可能なグラフ学習フレームワークを導入する。
このフレームワークは、構造的および効果的なネットワーク間の動的相互作用を捉えることを目的とした、特異的に設計されたノード埋め込み層を含んでいる。
論文 参考訳(メタデータ) (2024-05-21T20:37:07Z) - BrainODE: Dynamic Brain Signal Analysis via Graph-Aided Neural Ordinary Differential Equations [67.79256149583108]
本稿では,脳波を連続的にモデル化するBrainODEというモデルを提案する。
遅延初期値とニューラルODE関数を不規則な時系列から学習することにより、BrainODEは任意の時点の脳信号を効果的に再構築する。
論文 参考訳(メタデータ) (2024-04-30T10:53:30Z) - MindBridge: A Cross-Subject Brain Decoding Framework [60.58552697067837]
脳の復号化は、獲得した脳信号から刺激を再構築することを目的としている。
現在、脳の復号化はモデルごとのオブジェクトごとのパラダイムに限られている。
我々は,1つのモデルのみを用いることで,オブジェクト間脳デコーディングを実現するMindBridgeを提案する。
論文 参考訳(メタデータ) (2024-04-11T15:46:42Z) - Extracting the Multiscale Causal Backbone of Brain Dynamics [9.905883167156393]
脳力学のマルチスケール因果バックボーン(MCB)を提案する。
我々のアプローチは、近年のマルチスケール因果構造学習の進歩を活用している。
マルチスケールの性質のおかげで、因果ダイナミクスは高レベルの認知機能に関連する脳の領域によって駆動される。
論文 参考訳(メタデータ) (2023-10-31T19:47:11Z) - The Causal Neural Connection: Expressiveness, Learnability, and
Inference [125.57815987218756]
構造因果モデル (Structuor causal model, SCM) と呼ばれるオブジェクトは、調査中のシステムのランダムな変動のメカニズムと源の集合を表す。
本稿では, 因果的階層定理 (Thm. 1, Bareinboim et al., 2020) がまだニューラルモデルに対して成り立っていることを示す。
我々はニューラル因果モデル(NCM)と呼ばれる特殊なタイプのSCMを導入し、因果推論に必要な構造的制約をエンコードする新しいタイプの帰納バイアスを定式化する。
論文 参考訳(メタデータ) (2021-07-02T01:55:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。