論文の概要: Earth AI: Unlocking Geospatial Insights with Foundation Models and Cross-Modal Reasoning
- arxiv url: http://arxiv.org/abs/2510.18318v2
- Date: Wed, 29 Oct 2025 19:23:31 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-31 13:50:54.694975
- Title: Earth AI: Unlocking Geospatial Insights with Foundation Models and Cross-Modal Reasoning
- Title(参考訳): Earth AI - 基礎モデルとクロスモーダル推論による地理空間的洞察のアンロック
- Authors: Aaron Bell, Amit Aides, Amr Helmy, Arbaaz Muslim, Aviad Barzilai, Aviv Slobodkin, Bolous Jaber, David Schottlander, George Leifman, Joydeep Paul, Mimi Sun, Nadav Sherman, Natalie Williams, Per Bjornsson, Roy Lee, Ruth Alcantara, Thomas Turnbull, Tomer Shekel, Vered Silverman, Yotam Gigi, Adam Boulanger, Alex Ottenwess, Ali Ahmadalipour, Anna Carter, Behzad Vahedi, Charles Elliott, David Andre, Elad Aharoni, Gia Jung, Hassler Thurston, Jacob Bien, Jamie McPike, Juliet Rothenberg, Kartik Hegde, Kel Markert, Kim Philipp Jablonski, Luc Houriez, Monica Bharel, Phing VanLee, Reuven Sayag, Sebastian Pilarski, Shelley Cazares, Shlomi Pasternak, Siduo Jiang, Thomas Colthurst, Yang Chen, Yehonathan Refael, Yochai Blau, Yuval Carny, Yael Maguire, Avinatan Hassidim, James Manyika, Tim Thelin, Genady Beryozkin, Gautam Prasad, Luke Barrington, Yossi Matias, Niv Efron, Shravya Shetty,
- Abstract要約: 本稿では,地球空間AIモデルとエージェント推論のファミリーである地球AIを紹介する。
Geminiのエージェントは複雑なマルチステップクエリを処理する。
現実の危機シナリオの新たなベンチマークでは、エージェントが批判的かつタイムリーな洞察を提供する能力を示しています。
- 参考スコア(独自算出の注目度): 11.65540655533559
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Geospatial data offers immense potential for understanding our planet. However, the sheer volume and diversity of this data along with its varied resolutions, timescales, and sparsity pose significant challenges for thorough analysis and interpretation. This paper introduces Earth AI, a family of geospatial AI models and agentic reasoning that enables significant advances in our ability to unlock novel and profound insights into our planet. This approach is built upon foundation models across three key domains--Planet-scale Imagery, Population, and Environment--and an intelligent Gemini-powered reasoning engine. We present rigorous benchmarks showcasing the power and novel capabilities of our foundation models and validate that when used together, they provide complementary value for geospatial inference and their synergies unlock superior predictive capabilities. To handle complex, multi-step queries, we developed a Gemini-powered agent that jointly reasons over our multiple foundation models along with large geospatial data sources and tools. On a new benchmark of real-world crisis scenarios, our agent demonstrates the ability to deliver critical and timely insights, effectively bridging the gap between raw geospatial data and actionable understanding.
- Abstract(参考訳): 地球空間のデータは、地球を理解する大きな可能性を秘めている。
しかし、このデータの量と多様性は、その様々な解像度、時間スケール、空間性と共に、徹底的な分析と解釈に重大な課題をもたらしている。
本稿では,地球空間型AIモデルとエージェント推論のファミリーである地球AIを紹介する。
このアプローチは、Planet-scale Imagery、Population、Environmentalという3つの主要なドメインにわたる基盤モデルと、インテリジェントなGeminiベースの推論エンジンに基づいて構築されている。
基礎モデルのパワーと斬新な能力を示す厳密なベンチマークを提示し、それらを併用すると地理空間推論と相乗効果の相補的価値が優れた予測能力を解き放つことを実証する。
複雑なマルチステップクエリを処理するために、我々は、大規模な地理空間データソースとツールとともに、複数の基盤モデルに対して共同で理由付けを行うGeminiベースのエージェントを開発した。
実世界の危機シナリオの新たなベンチマークで、我々のエージェントは、重要かつタイムリーな洞察を提供する能力を示し、生の地理空間データと実行可能な理解のギャップを効果的に埋める。
関連論文リスト
- Agentic Satellite-Augmented Low-Altitude Economy and Terrestrial Networks: A Survey on Generative Approaches [76.12691010182802]
本調査は,衛星搭載低高度経済と地上ネットワーク(SLAETN)におけるエージェント人工知能(AI)の実現に焦点をあてる。
SLAETNのアーキテクチャと特徴を紹介するとともに,衛星,空中,地上コンポーネントの統合において生じる課題を分析する。
これらのモデルが,コミュニケーション強化,セキュリティとプライバシ保護,インテリジェントな衛星タスクという,3つの領域にわたるエージェント機能をどのように強化するかを検討する。
論文 参考訳(メタデータ) (2025-07-19T14:07:05Z) - OmniGeo: Towards a Multimodal Large Language Models for Geospatial Artificial Intelligence [51.0456395687016]
マルチモーダル大言語モデル(LLM)が人工知能の新しいフロンティアをオープンした。
地理空間応用に適したMLLM(OmniGeo)を提案する。
自然言語理解の長所と空間的推論の長所を組み合わせることで,GeoAIシステムの指示追従能力と精度を高めることができる。
論文 参考訳(メタデータ) (2025-03-20T16:45:48Z) - Geolocation with Real Human Gameplay Data: A Large-Scale Dataset and Human-Like Reasoning Framework [59.42946541163632]
3つの重要なコンポーネントを持つ包括的位置決めフレームワークを導入する。
大規模データセットGeoComp、新しい推論手法GeoCoT、評価指標GeoEval。
また,GeoCoTは解釈可能性を高めつつ,位置情報の精度を最大25%向上させることを示した。
論文 参考訳(メタデータ) (2025-02-19T14:21:25Z) - PEACE: Empowering Geologic Map Holistic Understanding with MLLMs [64.58959634712215]
地質図は地質学の基本的な図として、地球の地下と地表の構造と構成に関する重要な洞察を提供する。
その重要性にもかかわらず、現在のマルチモーダル大言語モデル(MLLM)は地質図の理解に乏しいことが多い。
このギャップを定量化するために、地質地図理解においてMLLMを評価するための最初のベンチマークであるGeoMap-Benchを構築した。
論文 参考訳(メタデータ) (2025-01-10T18:59:42Z) - Self-Supervised Representation Learning for Geospatial Objects: A Survey [21.504978593542354]
自己教師付き学習(SSL)は、広範囲にラベル付けされた監督なしでデータから直接効果的で一般化可能な表現を学習できる能力に注目が集まっている。
本稿では,3種類の幾何学的ベクトルタイプ(ポイント,ポリライン,ポリゴン)において,地理空間オブジェクトに対して特別に適用または開発されたSSL技術について調査する。
地空間オブジェクトに対するSSLの出現傾向,特に地空間基盤モデルへの段階的な進歩について検討する。
論文 参考訳(メタデータ) (2024-08-22T05:28:22Z) - When Geoscience Meets Foundation Models: Towards General Geoscience Artificial Intelligence System [6.445323648941926]
地球科学基礎モデル(Geoscience foundation model, GFMs)は、地球系の力学のシミュレーションと理解を強化するために、広範な学際データを統合するパラダイムシフトソリューションである。
GFMのユニークな長所は、フレキシブルなタスク仕様、多様な入出力能力、マルチモーダルな知識表現である。
このレビューは、先進的なAI技術と地球科学の交差点における未解決の機会を強調した、新興の地球科学研究パラダイムの包括的概要を提供する。
論文 参考訳(メタデータ) (2023-09-13T08:44:09Z) - On the Opportunities and Challenges of Foundation Models for Geospatial
Artificial Intelligence [39.86997089245117]
ファンデーションモデル(FM)は、微調整、少数ショット、ゼロショット学習によって、幅広い下流タスクに適応することができる。
我々は,GeoAIのためのFMを開発する上で大きな課題の一つとして,地理空間的タスクのマルチモーダル性に対処することを提案する。
論文 参考訳(メタデータ) (2023-04-13T19:50:17Z) - A General Purpose Neural Architecture for Geospatial Systems [142.43454584836812]
本稿では,空間的帰納バイアスを持つ汎用ニューラルアーキテクチャ(GPNA)の構築に向けたロードマップを示す。
このようなモデルがコミュニティのメンバー間の協力をいかに促進するかを考察する。
論文 参考訳(メタデータ) (2022-11-04T09:58:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。