論文の概要: On AI Verification in Open RAN
- arxiv url: http://arxiv.org/abs/2510.18417v1
- Date: Tue, 21 Oct 2025 08:48:26 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-25 03:08:13.161563
- Title: On AI Verification in Open RAN
- Title(参考訳): Open RANにおけるAI検証について
- Authors: Rahul Soundrarajan, Claudio Fiandrino, Michele Polese, Salvatore D'Oro, Leonardo Bonati, Tommaso Melodia,
- Abstract要約: 我々は,Open RANにおける深層強化学習(DRL)エージェントの動作を検証するために,解釈可能なモデルに基づく軽量な検証手法を提案する。
具体的には、Decision Tree(DT)ベースの検証器を使用して、実行時にほぼリアルタイムの一貫性チェックを実行します。
また、Open RANにおける信頼できるAIの採用を保証するための今後の課題についても概説する。
- 参考スコア(独自算出の注目度): 22.005711879375173
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Open RAN introduces a flexible, cloud-based architecture for the Radio Access Network (RAN), enabling Artificial Intelligence (AI)/Machine Learning (ML)-driven automation across heterogeneous, multi-vendor deployments. While EXplainable Artificial Intelligence (XAI) helps mitigate the opacity of AI models, explainability alone does not guarantee reliable network operations. In this article, we propose a lightweight verification approach based on interpretable models to validate the behavior of Deep Reinforcement Learning (DRL) agents for RAN slicing and scheduling in Open RAN. Specifically, we use Decision Tree (DT)-based verifiers to perform near-real-time consistency checks at runtime, which would be otherwise unfeasible with computationally expensive state-of-the-art verifiers. We analyze the landscape of XAI and AI verification, propose a scalable architectural integration, and demonstrate feasibility with a DT-based slice-verifier. We also outline future challenges to ensure trustworthy AI adoption in Open RAN.
- Abstract(参考訳): Open RANは、Radio Access Network(RAN)のための柔軟なクラウドベースのアーキテクチャを導入し、異質なマルチベンダデプロイメントをまたいだ人工知能(AI)/マシーンラーニング(ML)による自動化を可能にする。
Explainable Artificial Intelligence (XAI)はAIモデルの不透明度を軽減するのに役立っているが、説明可能性だけでは信頼性の高いネットワーク操作を保証していない。
本稿では,Open RANにおけるRANスライシングとスケジューリングのための深層強化学習(DRL)エージェントの動作を検証するために,解釈可能なモデルに基づく軽量な検証手法を提案する。
具体的には、Decision Tree(DT)ベースの検証器を使用して実行時にほぼリアルタイムの一貫性チェックを行う。
我々はXAIとAI検証の状況を分析し、スケーラブルなアーキテクチャ統合を提案し、DTベースのスライス検証で実現可能性を示す。
また、Open RANにおける信頼できるAIの採用を保証するための今後の課題についても概説する。
関連論文リスト
- WebSailor-V2: Bridging the Chasm to Proprietary Agents via Synthetic Data and Scalable Reinforcement Learning [73.91893534088798]
WebSailorは、この重要な機能を組み込むように設計された、完全なポストトレーニング方法論である。
我々のアプローチは、構造化サンプリングと情報難読化によって、新しい、不確実なタスクを生成することである。
WebSailorは複雑な情報検索タスクにおいて、すべてのオープンソースエージェントを著しく上回る。
論文 参考訳(メタデータ) (2025-09-16T17:57:03Z) - Interpretable Anomaly-Based DDoS Detection in AI-RAN with XAI and LLMs [19.265893691825234]
次世代無線アクセスネットワーク(RAN)は、インテリジェントコントローラを通じてプログラム可能性、インテリジェンス、およびほぼリアルタイム制御を導入する。
本稿では,Large Language Models (LLMs) による将来のRAN環境に対する XAI 侵入検知(IDS) の機会,課題,研究ギャップを概説する。
論文 参考訳(メタデータ) (2025-07-27T22:16:09Z) - AI/ML Life Cycle Management for Interoperable AI Native RAN [50.61227317567369]
人工知能(AI)と機械学習(ML)モデルは、5Gラジオアクセスネットワーク(RAN)を急速に浸透させている
これらの開発は、AIネイティブなトランシーバーを6Gのキーイネーブルとして基盤を築いた。
論文 参考訳(メタデータ) (2025-07-24T16:04:59Z) - Beyond Connectivity: An Open Architecture for AI-RAN Convergence in 6G [20.07205081315289]
本稿では、共有インフラストラクチャ上での通信およびAIワークロードのオーケストレーションと管理を統一する、新しい収束型O-RANおよびAI-RANアーキテクチャを提案する。
i) O-RAN Service Management and Orchestration(SMO)を拡張してRANおよびAIワークロード間の統合リソースとアロケーションを可能にするAI-RAN Orchestrator、(ii)分散エッジAIプラットフォームにリアルタイム処理機能を提供するAI-RANサイト。
論文 参考訳(メタデータ) (2025-07-09T14:49:11Z) - ORAN-GUIDE: RAG-Driven Prompt Learning for LLM-Augmented Reinforcement Learning in O-RAN Network Slicing [5.62872273155603]
マルチエージェント(MARL)をタスク関連で意味的にリッチな状態表現で拡張するデュアルLLMフレームワークである textitORAN-GUIDE を提案する。
その結果、ORAN-GUIDEは標準MARLおよび単一LLMベースライン上でのサンプル効率、ポリシー収束、性能一般化を改善することが示された。
論文 参考訳(メタデータ) (2025-05-31T14:21:19Z) - Thinking Longer, Not Larger: Enhancing Software Engineering Agents via Scaling Test-Time Compute [61.00662702026523]
より大規模なモデルではなく、推論時間の増加を活用する統合されたテスト時間計算スケーリングフレームワークを提案する。
当社のフレームワークには,内部TTCと外部TTCの2つの補完戦略が組み込まれている。
当社の textbf32B モデルは,DeepSeek R1 671B や OpenAI o1 など,はるかに大きなモデルを上回る 46% の課題解決率を実現している。
論文 参考訳(メタデータ) (2025-03-31T07:31:32Z) - Generative Diffusion-based Contract Design for Efficient AI Twins Migration in Vehicular Embodied AI Networks [55.15079732226397]
Embodied AIは、サイバースペースと物理空間のギャップを埋める、急速に進歩する分野だ。
VEANETでは、組み込まれたAIツインが車載AIアシスタントとして機能し、自律運転をサポートするさまざまなタスクを実行する。
論文 参考訳(メタデータ) (2024-10-02T02:20:42Z) - Actor-Critic Network for O-RAN Resource Allocation: xApp Design,
Deployment, and Analysis [3.8073142980733]
Open Radio Access Network (O-RAN)は、オープンネス、インテリジェンス、自動制御を可能にする新しいRANアーキテクチャを導入した。
RAN Intelligent Controller (RIC)は、RANコントローラの設計とデプロイのためのプラットフォームを提供する。
xAppsは、機械学習(ML)アルゴリズムを活用してほぼリアルタイムで動作することで、この責任を負うアプリケーションである。
論文 参考訳(メタデータ) (2022-09-26T19:12:18Z) - OrchestRAN: Network Automation through Orchestrated Intelligence in the
Open RAN [27.197110488665157]
ネットワークインテリジェンスのための新しいオーケストレーションフレームワークOrchestRANを提示・試作する。
OrchestRANは、リアルタイムのRAN Intelligent Controller(RIC)で実行するために設計されており、ネットワークオペレータ(NO)が高レベルな制御/推論の目的を指定することができる。
オープンRANにおけるインテリジェンスを編成する問題はNPハードであり、現実のアプリケーションをサポートするために低複雑さのソリューションを設計する。
論文 参考訳(メタデータ) (2022-01-14T19:20:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。