論文の概要: Image augmentation with invertible networks in interactive satellite image change detection
- arxiv url: http://arxiv.org/abs/2510.18660v1
- Date: Tue, 21 Oct 2025 14:11:22 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-25 03:08:13.725941
- Title: Image augmentation with invertible networks in interactive satellite image change detection
- Title(参考訳): 対話型衛星画像変化検出における可逆ネットワークによる画像強調
- Authors: Hichem Sahbi,
- Abstract要約: 本稿では,能動学習に基づく対話型衛星画像変化検出アルゴリズムを提案する。
我々のフレームワークは、質問と回答のモデルを活用する反復的なプロセスを採用している。
私たちのフレームワークの主な貢献は、ディスプレイの拡張を可能にする新しい非可逆ネットワークにある。
- 参考スコア(独自算出の注目度): 14.061680807550722
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper devises a novel interactive satellite image change detection algorithm based on active learning. Our framework employs an iterative process that leverages a question-and-answer model. This model queries the oracle (user) about the labels of a small subset of images (dubbed as display), and based on the oracle's responses, change detection model is dynamically updated. The main contribution of our framework resides in a novel invertible network that allows augmenting displays, by mapping them from highly nonlinear input spaces to latent ones, where augmentation transformations become linear and more tractable. The resulting augmented data are afterwards mapped back to the input space, and used to retrain more effective change detection criteria in the subsequent iterations of active learning. Experimental results demonstrate superior performance of our proposed method compared to the related work.
- Abstract(参考訳): 本稿では,能動学習に基づく対話型衛星画像変化検出アルゴリズムを提案する。
我々のフレームワークは、質問と回答のモデルを活用する反復的なプロセスを採用している。
このモデルは、画像の小さなサブセットのラベルに関するオラクル(ユーザ)をクエリし、そのオラクルの応答に基づいて、変更検出モデルを動的に更新する。
このフレームワークの主な貢献は、高非線形入力空間から遅延入力空間にマッピングすることで、ディスプレイの拡張を可能にする新しい非可逆ネットワークにあり、拡張変換は線形化され、よりトラクタブルになる。
得られた拡張データはその後、入力空間にマッピングされ、その後のアクティブラーニングの繰り返しにおいて、より効果的な変更検出基準を再訓練するために使用される。
実験の結果,提案手法は関連する手法と比較して優れた性能を示した。
関連論文リスト
- Exploring Kernel Transformations for Implicit Neural Representations [57.2225355625268]
入射神経表現(INR)は、ニューラルネットワークを利用して、対応する属性に座標をマッピングすることで、信号を表現する。
この研究は、モデル自体を変更せずに入出力のカーネル変換の効果を探求する先駆者となった。
我々の発見の副産物は、スケールとシフトを組み合わせて、INRを無視できないオーバーヘッドで著しく向上させる、単純で効果的な方法である。
論文 参考訳(メタデータ) (2025-04-07T04:43:50Z) - Reinforcement-based Display-size Selection for Frugal Satellite Image
Change Detection [5.656581242851759]
能動学習に基づく対話型衛星画像変化検出アルゴリズムを提案する。
提案手法は反復的であり,最も重要な画像のラベルについてユーザ(オーラル)を軽率に探索する。
論文 参考訳(メタデータ) (2023-12-28T11:14:43Z) - Frugal Satellite Image Change Detection with Deep-Net Inversion [5.656581242851759]
能動学習に基づく変化検出のための新しいアルゴリズムを考案する。
提案手法は,変化の関連性についてオラクル(ユーザ)を探索する質問・回答モデルに基づく。
主な貢献は、最も代表的で多様で不確実な仮想外見を学ぶことができる、新しい敵モデルにある。
論文 参考訳(メタデータ) (2023-09-26T09:25:53Z) - Effective Data Augmentation With Diffusion Models [45.18188726287581]
我々は、事前訓練されたテキスト・画像拡散モデルによりパラメータ化された画像・画像変換によるデータ拡張の多様性の欠如に対処する。
本手法は,市販の拡散モデルを用いて画像のセマンティクスを編集し,いくつかのラベル付き例から新しい視覚概念に一般化する。
本手法は,実世界の雑草認識タスクと数ショット画像分類タスクにおいて評価し,テスト領域における精度の向上を観察する。
論文 参考訳(メタデータ) (2023-02-07T20:42:28Z) - Reinforcement-based frugal learning for satellite image change detection [12.18340575383456]
能動学習に基づく対話型衛星画像変化検出アルゴリズムを提案する。
提案されたアプローチは反復的であり、ターゲットとする変更についてユーザ(オーラル)に質問する。
本稿では,各未ラベルサンプルに関連度尺度を割り当てる確率的フレームワークについて検討する。
論文 参考訳(メタデータ) (2022-03-22T09:37:24Z) - Frugal Learning of Virtual Exemplars for Label-Efficient Satellite Image
Change Detection [12.18340575383456]
本稿では,能動学習に基づく対話型衛星画像変化検出アルゴリズムを提案する。
提案するフレームワークは反復的であり、最も情報に富むディスプレイについてオラクル(ユーザ)に質問する質問と回答モデルに依存している。
我々のフレームワークの貢献は、最も代表的で多様な仮想見本を選択できる新しい表示モデルに存在する。
論文 参考訳(メタデータ) (2022-03-22T09:29:42Z) - Active learning for interactive satellite image change detection [12.907324263748817]
本稿では,衛星画像変化検出のための新しい能動学習アルゴリズムを提案する。
提案手法は対話的で,質問と回答のモデルに基づいて,サンプル衛星画像対の関連性についてオラクルに質問する。
自然災害後の衛星画像変化検出作業(竜巻)に関する実験は,提案手法の関連性を示すものである。
論文 参考訳(メタデータ) (2021-10-08T16:59:12Z) - Cross-Modal Retrieval Augmentation for Multi-Modal Classification [61.5253261560224]
画像の非構造化外部知識源とそれに対応するキャプションを用いて視覚的質問応答を改善する。
まず,画像とキャプションを同一空間に埋め込むための新しいアライメントモデルを訓練し,画像検索の大幅な改善を実現する。
第2に、トレーニングされたアライメントモデルを用いた検索強化マルチモーダルトランスは、強いベースライン上でのVQAの結果を改善することを示す。
論文 参考訳(メタデータ) (2021-04-16T13:27:45Z) - CrossTransformers: spatially-aware few-shot transfer [92.33252608837947]
非常に少ないデータを持つ新しいタスクを考えると、現代の視覚システムは驚くほど急速に低下する。
現代の視覚システムを支えるニューラルネットワーク表現が、どのようにして監督の崩壊にさらされているかを示す。
そこで我々は,伝達を良くする汎用的な機能を促進するために,自己指導型学習を提案する。
論文 参考訳(メタデータ) (2020-07-22T15:37:08Z) - Learning to Compose Hypercolumns for Visual Correspondence [57.93635236871264]
本稿では,画像に条件付けされた関連レイヤを活用することで,動的に効率的な特徴を構成する視覚対応手法を提案する。
提案手法はダイナミックハイパーピクセルフロー(Dynamic Hyperpixel Flow)と呼ばれ,深層畳み込みニューラルネットワークから少数の関連層を選択することにより,高速にハイパーカラム機能を構成することを学習する。
論文 参考訳(メタデータ) (2020-07-21T04:03:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。