論文の概要: ADPO: Anchored Direct Preference Optimization
- arxiv url: http://arxiv.org/abs/2510.18913v1
- Date: Tue, 21 Oct 2025 05:53:13 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-25 03:08:14.234483
- Title: ADPO: Anchored Direct Preference Optimization
- Title(参考訳): ADPO: Anchored Direct Preference Optimization
- Authors: Wang Zixian,
- Abstract要約: Anchored Direct Preference Optimization (ADPO)は、DPOをソフトな嗜好、参照ポリシーアンカー、グループワイズ拡張で一般化する統合フレームワークである。
DPO,Bradley-Terry の目的,Top-1-vs-Rest の定式化が特別な場合として現れることを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Anchored Direct Preference Optimization (ADPO) is a unified framework that generalizes Direct Preference Optimization (DPO) with soft preferences, reference-policy anchoring, and groupwise extensions. While standard DPO assumes hard binary labels and pairwise comparisons, ADPO introduces: (i) soft preference probabilities that encode uncertainty and mitigate gradient drift; (ii) arbitrary reference-policy anchors that stabilize training via groupwise shift invariance and implicit KL regularization; and (iii) listwise preference modeling through Plackett-Luce distributions. We prove that DPO, Bradley-Terry objectives, and Top-1-vs-Rest formulations emerge as special cases. ADPO yields three practical variants: pairwise anchored Soft-DPO, listwise anchored Soft-DPO with raw rewards, and KDE-based listwise smoothing for heavy-tailed noise. In contextual bandits, anchoring improves WinMass by 38-63% over standard DPO, while KDE smoothing achieves 0.68 vs 0.32 under heavy-tailed contamination (112% relative gain). In sequential reinforcement learning (CartPole, LunarLander), anchoring improves noisy-preference performance by 15-29%, confirming transfer from single-step to multi-step settings. Experiments with 10-256 parameter models provide clear guidance: use pairwise anchored Soft-DPO for clean or moderate noise, and KDE-based listwise ADPO for extreme contamination.
- Abstract(参考訳): Anchored Direct Preference Optimization (ADPO) は、DPO(Direct Preference Optimization)をソフトな選好、参照ポリシーアンカー、グループワイド拡張で一般化した統合フレームワークである。
標準的なDPOはハードバイナリラベルとペア比較を前提としていますが、ADPOでは次のように紹介しています。
一 不確実性を符号化し、勾配ドリフトを緩和する柔らかい嗜好確率
(二)集団シフト不変性及び暗黙KL正規化による訓練を安定させる任意の基準政治アンカー
(iii)プラケット・ルーシ分布によるリストワイズ選好モデリング。
DPO,Bradley-Terry の目的,Top-1-vs-Rest の定式化が特別な場合として現れることを示す。
ADPOは、ペアワイドのSoft-DPO、リストワイドのSoft-DPO、ヘビーテールのノイズに対するKDEベースのリストワイドスムーシングの3つの実用的なバリエーションを提供する。
状況によっては、アンカーは標準のDPOよりも38-63%向上し、KDEのスムース化は重尾汚染下で0.68対0.32となる(112%の相対的なゲイン)。
逐次強化学習(CartPole, LunarLander)では、アンカリングによりノイズ参照性能が15~29%向上し、シングルステップからマルチステップ設定への移行が確認される。
10-256のパラメータモデルを用いた実験では、クリーンまたは中程度のノイズに対してペアワイドアンカーのSoft-DPO、極端な汚染に対してKDEベースのリストワイドADPOが明確なガイダンスを提供する。
関連論文リスト
- Sem-DPO: Mitigating Semantic Inconsistency in Preference Optimization for Prompt Engineering [5.568436850698628]
Sem-DPOは意味的一貫性を維持しながら、その単純さと効率を維持するDPOの亜種である。
本研究は,Sem-DPOが原文の有界近傍で学習のプロンプトを継続していることを示す。
3つの標準テキスト-画像のプロンプト-最適化ベンチマークと2つの言語モデルにおいて、Sem-DPOはDPOよりもCLIPの類似度が8-12%高く、5-9%高いHPSv2.1、PickScore)。
論文 参考訳(メタデータ) (2025-07-27T05:20:13Z) - BPO: Revisiting Preference Modeling in Direct Preference Optimization [13.243174453617064]
DPO (Direct Preference Optimization) は、Large Language Models (LLM) を人間の好みに合わせる一般的な手法として登場した。
DPOは、ペアのランク付け損失を通じて、選択された応答と拒否された応答の相対順序を効果的に保持する。
それはしばしば絶対的な報酬の程度を無視し、パフォーマンスを低下させる。
本稿では,選択された応答と拒否された応答の最適化のバランスをとる新しいフレームワークであるBa balanced Preference Optimization (BPO)を提案する。
論文 参考訳(メタデータ) (2025-06-04T04:21:01Z) - In-context Ranking Preference Optimization [65.5489745857577]
In-context Ranking Preference Optimization (IRPO) フレームワークを提案する。
IRPOは標準のDPO手法よりも高い性能を示し、LLMと直接文脈内ランキング設定の整合性を強調した。
論文 参考訳(メタデータ) (2025-04-21T23:06:12Z) - FocalPO: Enhancing Preference Optimizing by Focusing on Correct Preference Rankings [40.605411087380226]
我々は、モデルがすでに正しくランク付けできるようなペアの理解を高めることを優先するDPO変種であるFocalPOを紹介した。
視覚タスクで使用されるFocal LossにインスパイアされたFocalPOは、動的にDPO損失をスケールするために変調係数を追加することでこれを達成している。
論文 参考訳(メタデータ) (2025-01-11T21:41:27Z) - Uncertainty-Penalized Direct Preference Optimization [52.387088396044206]
我々は、優先不確実性ペナル化スキームを導入し、DPOの悲観的な枠組みを開発する。
ペナル化は、不確実なサンプルの損失勾配を減衰させる損失の補正として機能する。
我々は,バニラDPOと比較して全体的な性能が向上し,高い不確実性選択/拒絶反応によるプロンプトの完成度も向上した。
論文 参考訳(メタデータ) (2024-10-26T14:24:37Z) - AlphaDPO: Adaptive Reward Margin for Direct Preference Optimization [45.46582930202524]
$alpha$-DPOは、大規模言語モデルの適応的優先最適化アルゴリズムである。
ポリシーモデルと参照モデルのバランスを取り、パーソナライズされた報酬マージンを達成する。
さまざまなモデル設定でDPOとSimPOを一貫して上回ります。
論文 参考訳(メタデータ) (2024-10-14T04:29:57Z) - Triple Preference Optimization: Achieving Better Alignment using a Single Step Optimization [34.29965046863887]
Triple Preference Optimization (TPO) は、推論能力と命令追従能力の両方を強化するために設計された新しい選好学習手法である。
TPOは、異なるデータセットサイズで応答長を大幅に増加させることなく、既存のメソッドよりも大幅に改善されている。
論文 参考訳(メタデータ) (2024-05-26T20:18:11Z) - Self-Play Preference Optimization for Language Model Alignment [75.83359213697854]
近年の進歩は、嗜好の確率で直接作業することで、人間の嗜好をより正確に反映できることを示している。
本稿では,言語モデルアライメントのためのセルフプレイ方式を提案する。
我々の手法はSPPO(Self-Play Preference Optimization)と呼ばれ、繰り返しポリシー更新を利用してナッシュ均衡を確実に近似する。
論文 参考訳(メタデータ) (2024-05-01T17:59:20Z) - Direct Preference Optimization with an Offset [58.7977683502207]
直接選好最適化(DPO)は、大きな言語モデルと人間の選好を整合させる成功戦略である。
本稿では,DPOをオフセット(ODPO)で一般化し,微調整時にすべての選好ペアを等しく扱わないDPOを提案する。
論文 参考訳(メタデータ) (2024-02-16T10:55:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。