論文の概要: PRGCN: A Graph Memory Network for Cross-Sequence Pattern Reuse in 3D Human Pose Estimation
- arxiv url: http://arxiv.org/abs/2510.19475v1
- Date: Wed, 22 Oct 2025 11:12:07 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-25 03:08:15.726819
- Title: PRGCN: A Graph Memory Network for Cross-Sequence Pattern Reuse in 3D Human Pose Estimation
- Title(参考訳): PRGCN:3次元人文推定におけるクロスシーケンスパターン再利用のためのグラフメモリネットワーク
- Authors: Zhuoyang Xie, Yibo Zhao, Hui Huang, Riwei Wang, Zan Gao,
- Abstract要約: 本稿では、パターン検索と適応の問題としてポーズ推定を形式化する新しいフレームワークであるパターン再利用グラフ変換ネットワーク(PRGCN)を紹介する。
PRGCNのコアとなるグラフメモリバンクは、リレーショナルグラフとして符号化された一連のコンパクトなポーズプロトタイプを学習し、格納する。
PRGCNは,それぞれ37.1mm,13.4mmのMPJPEを達成し,クロスドメインの一般化能力の向上を図っている。
- 参考スコア(独自算出の注目度): 18.771349697842947
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Monocular 3D human pose estimation remains a fundamentally ill-posed inverse problem due to the inherent depth ambiguity in 2D-to-3D lifting. While contemporary video-based methods leverage temporal context to enhance spatial reasoning, they operate under a critical paradigm limitation: processing each sequence in isolation, thereby failing to exploit the strong structural regularities and repetitive motion patterns that pervade human movement across sequences. This work introduces the Pattern Reuse Graph Convolutional Network (PRGCN), a novel framework that formalizes pose estimation as a problem of pattern retrieval and adaptation. At its core, PRGCN features a graph memory bank that learns and stores a compact set of pose prototypes, encoded as relational graphs, which are dynamically retrieved via an attention mechanism to provide structured priors. These priors are adaptively fused with hard-coded anatomical constraints through a memory-driven graph convolution, ensuring geometrical plausibility. To underpin this retrieval process with robust spatiotemporal features, we design a dual-stream hybrid architecture that synergistically combines the linear-complexity, local temporal modeling of Mamba-based state-space models with the global relational capacity of self-attention. Extensive evaluations on Human3.6M and MPI-INF-3DHP benchmarks demonstrate that PRGCN establishes a new state-of-the-art, achieving an MPJPE of 37.1mm and 13.4mm, respectively, while exhibiting enhanced cross-domain generalization capability. Our work posits that the long-overlooked mechanism of cross-sequence pattern reuse is pivotal to advancing the field, shifting the paradigm from per-sequence optimization towards cumulative knowledge learning.
- Abstract(参考訳): 単眼的な3次元ポーズ推定は、2D-to-3Dリフトの深度あいまいさによる逆問題として根本から不備なままである。
現代のビデオベースの手法では、時間的文脈を利用して空間的推論を強化するが、それらは重要なパラダイムの制限の下で機能する。
本稿では、パターン検索と適応の問題としてポーズ推定を形式化する新しいフレームワークであるPattern Reuse Graph Convolutional Network(PRGCN)を紹介する。
PRGCNのコアとなるグラフメモリバンクは、リレーショナルグラフとして符号化された一連のコンパクトなポーズプロトタイプを学習し、格納する。
これらの先行は、メモリ駆動グラフ畳み込みによってハードコードされた解剖学的制約と適応的に融合し、幾何学的妥当性を保証する。
本研究では,マンバをベースとした状態空間モデルの線形複雑で局所的な時間的モデリングと,自己注意のグローバルなリレーショナルキャパシティを相乗的に組み合わせた2重ストリームハイブリッドアーキテクチャを設計する。
Human3.6M と MPI-INF-3DHP ベンチマークの大規模な評価は、PRGCN がそれぞれ 37.1mm と 13.4mm の MPJPE を達成し、クロスドメインの一般化能力を高めたことを証明している。
我々の研究は、シーケンスごとの最適化から累積的知識学習へとパラダイムをシフトさせ、クロスシーケンスパターンの再利用という長年見過ごされてきたメカニズムが、この分野の進展に欠かせないことを示唆している。
関連論文リスト
- 3D Human Pose Estimation via Spatial Graph Order Attention and Temporal Body Aware Transformer [5.303583360581161]
本稿では,GCNのグラフモデリング機能を利用して,各スケルトンを異なる順序の複数のグラフで表現する手法を提案する。
提案した時間的ボディアウェア変換器を用いてシーケンスの空間的特徴を処理する。
Human3.6m, MPIINF-3DHP, HumanEva-Iデータセットを用いた実験により, 提案手法の有効性が示された。
論文 参考訳(メタデータ) (2025-05-02T04:58:04Z) - STGFormer: Spatio-Temporal GraphFormer for 3D Human Pose Estimation in Video [7.345621536750547]
本稿では,ビデオ中の3次元ポーズ推定のためのS-Temporal GraphFormerフレームワーク(STGFormer)を提案する。
まず,人体固有のグラフ分布をより効果的に活用するためのSTGアテンション機構を導入する。
次に、時間次元と空間次元を独立に並列に処理するための変調ホップワイド正規GCNを提案する。
最後に,Human3.6MおよびMPIINF-3DHPデータセット上での最先端性能を示す。
論文 参考訳(メタデータ) (2024-07-14T06:45:27Z) - Graph and Skipped Transformer: Exploiting Spatial and Temporal Modeling Capacities for Efficient 3D Human Pose Estimation [36.93661496405653]
我々は、簡潔なグラフとSkipped Transformerアーキテクチャを用いて、Transformer-temporal情報を活用するためのグローバルなアプローチを採っている。
具体的には、3Dポーズの段階では、粗粒の体部が展開され、完全なデータ駆動適応モデルが構築される。
実験はHuman3.6M、MPI-INF-3DHP、Human-Evaベンチマークで行われた。
論文 参考訳(メタデータ) (2024-07-03T10:42:09Z) - Overcoming Topology Agnosticism: Enhancing Skeleton-Based Action
Recognition through Redefined Skeletal Topology Awareness [24.83836008577395]
グラフ畳み込みネットワーク(GCN)は長い間、骨格に基づく行動認識の最先端を定義してきた。
彼らはモデルの重みとともに隣接行列を最適化する傾向がある。
このプロセスは、骨接続データの段階的な崩壊を引き起こし、マッピングしようとしたトポロジとは無関係なモデルで終わる。
本稿では,骨の接続性をグラフ距離のパワーを利用して符号化する革新的な経路を提案する。
論文 参考訳(メタデータ) (2023-05-19T06:40:12Z) - Global-to-Local Modeling for Video-based 3D Human Pose and Shape
Estimation [53.04781510348416]
フレーム内精度とフレーム間スムーズさにより,映像に基づく3次元人間のポーズと形状推定を評価する。
エンドツーエンドフレームワークGLoT(Global-to-Local Transformer)における長期的・短期的相関のモデル化を構造的に分離することを提案する。
我々のGLoTは、一般的なベンチマーク(3DPW、MPI-INF-3DHP、Human3.6M)において、最も低いモデルパラメータを持つ従来の最先端の手法を上回る。
論文 参考訳(メタデータ) (2023-03-26T14:57:49Z) - Pose-Oriented Transformer with Uncertainty-Guided Refinement for
2D-to-3D Human Pose Estimation [51.00725889172323]
本研究では,3次元ポーズ推定のための不確実性ガイド付き多目的変換器(POT)を提案する。
我々はまず,人骨のトポロジーを明示的に活用するために,新しいポーズ指向の自己注意機構と距離関連位置埋め込みを開発した。
本稿では,特に難解な関節に対するPOTからのポーズ予測を洗練させるために,不確実性誘導型リファインメントネットワーク(UGRN)を提案する。
論文 参考訳(メタデータ) (2023-02-15T00:22:02Z) - Gait Recognition in the Wild with Multi-hop Temporal Switch [81.35245014397759]
野生での歩行認識は、より実践的な問題であり、マルチメディアとコンピュータビジョンのコミュニティの注目を集めています。
本稿では,現実のシーンにおける歩行パターンの効果的な時間的モデリングを実現するために,新しいマルチホップ時間スイッチ方式を提案する。
論文 参考訳(メタデータ) (2022-09-01T10:46:09Z) - Back to MLP: A Simple Baseline for Human Motion Prediction [59.18776744541904]
本稿では、歴史的に観察されたシーケンスから将来の身体のポーズを予測することによる、人間の動作予測の課題に取り組む。
これらの手法の性能は、0.14Mパラメータしか持たない軽量で純粋にアーキテクチャアーキテクチャによって超えることができることを示す。
Human3.6M, AMASS, 3DPWデータセットの徹底的な評価は, siMLPeをダブした我々の手法が, 他のアプローチよりも一貫して優れていることを示している。
論文 参考訳(メタデータ) (2022-07-04T16:35:58Z) - Enhanced 3D Human Pose Estimation from Videos by using Attention-Based
Neural Network with Dilated Convolutions [12.900524511984798]
従来のネットワークや制約の形式が、どのように注意の枠組みに組み込むことができるのかを体系的な設計で示します。
拡張畳み込みのマルチスケール構造により,時間受容場を適応させることにより,これを実現する。
提案手法は,Human3.6Mデータセット上での関節位置誤差の平均を33.4mmに減らし,最先端性能を達成し,既存の手法よりも優れる。
論文 参考訳(メタデータ) (2021-03-04T17:26:51Z) - On the spatial attention in Spatio-Temporal Graph Convolutional Networks
for skeleton-based human action recognition [97.14064057840089]
カルチャーネットワーク(GCN)は、スケルトンをグラフとしてモデル化することで、スケルトンに基づく人間の行動認識の性能を約束する。
最近提案されたG時間に基づく手法のほとんどは、ネットワークの各層におけるグラフ構造を学習することで、性能を向上させる。
論文 参考訳(メタデータ) (2020-11-07T19:03:04Z) - Disentangling and Unifying Graph Convolutions for Skeleton-Based Action
Recognition [79.33539539956186]
本稿では,マルチスケールグラフ畳み込みと,G3Dという空間時間グラフ畳み込み演算子を結合する簡単な方法を提案する。
これらの提案を結合することにより,MS-G3Dという強力な特徴抽出器を開発し,そのモデルが3つの大規模データセット上で従来の最先端手法より優れていることを示す。
論文 参考訳(メタデータ) (2020-03-31T11:28:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。