論文の概要: Deep Sequence-to-Sequence Models for GNSS Spoofing Detection
- arxiv url: http://arxiv.org/abs/2510.19890v1
- Date: Wed, 22 Oct 2025 16:53:41 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-25 03:08:16.524024
- Title: Deep Sequence-to-Sequence Models for GNSS Spoofing Detection
- Title(参考訳): GNSSスポーフィング検出のための深部シーケンス・ツー・シーケンスモデル
- Authors: Jan Zelinka, Oliver Kost, Marek Hrúz,
- Abstract要約: 我々は、Long Short-Term Memory NetworkとTransformerにインスパイアされたアーキテクチャを利用して、ディープニューラルネットワークベースのスプーフィング検出モデルを適用した。
以上の結果から, 深層学習モデルにより, 密閉信号と実信号とを正確に識別し, 高い検出性能を達成できることが示唆された。
- 参考スコア(独自算出の注目度): 1.932919360019125
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present a data generation framework designed to simulate spoofing attacks and randomly place attack scenarios worldwide. We apply deep neural network-based models for spoofing detection, utilizing Long Short-Term Memory networks and Transformer-inspired architectures. These models are specifically designed for online detection and are trained using the generated dataset. Our results demonstrate that deep learning models can accurately distinguish spoofed signals from genuine ones, achieving high detection performance. The best results are achieved by Transformer-inspired architectures with early fusion of the inputs resulting in an error rate of 0.16%.
- Abstract(参考訳): 本研究では,スプーフィング攻撃とランダムな攻撃シナリオをシミュレートするデータ生成フレームワークを提案する。
我々は、Long Short-Term Memory NetworkとTransformerにインスパイアされたアーキテクチャを利用して、ディープニューラルネットワークベースのスプーフィング検出モデルを適用した。
これらのモデルは、オンライン検出用に特別に設計され、生成されたデータセットを使用してトレーニングされる。
以上の結果から, 深層学習モデルにより, 密閉信号と実信号とを正確に識別し, 高い検出性能を達成できることが示唆された。
最良の結果はTransformerにインスパイアされたアーキテクチャによって達成され、入力の早期融合によりエラー率は0.16%となる。
関連論文リスト
- Open-Set Deepfake Detection: A Parameter-Efficient Adaptation Method with Forgery Style Mixture [81.93945602120453]
本稿では,顔偽造検出に汎用的かつパラメータ効率の高い手法を提案する。
フォージェリー・ソース・ドメインの多様性を増大させるフォージェリー・ミックス・フォーミュレーションを設計する。
設計したモデルは、トレーニング可能なパラメータを著しく減らし、最先端の一般化性を実現する。
論文 参考訳(メタデータ) (2024-08-23T01:53:36Z) - TEN-GUARD: Tensor Decomposition for Backdoor Attack Detection in Deep
Neural Networks [3.489779105594534]
本稿では,ネットワークアクティベーションに適用した2つのテンソル分解法によるバックドア検出手法を提案する。
これは、複数のモデルを同時に分析する機能など、既存の検出方法と比較して、多くの利点がある。
その結果,現在の最先端手法よりも,バックドアネットワークを高精度かつ効率的に検出できることがわかった。
論文 参考訳(メタデータ) (2024-01-06T03:08:28Z) - IoTGeM: Generalizable Models for Behaviour-Based IoT Attack Detection [3.3772986620114387]
IoTGeMはIoTネットワークアタックをモデル化するためのアプローチで、汎用性を重視しながら、検出とパフォーマンスの向上にも寄与する。
厳格に独立したトレインとテストデータセットを使用して、モデルを構築、テストします。
IoTGeMは、ACK、HTTP、Syn、MHD、PS攻撃で99%のF1スコア、UDP攻撃で94%のF1スコアを達成した。
論文 参考訳(メタデータ) (2023-10-17T21:46:43Z) - Anomaly Detection with Ensemble of Encoder and Decoder [2.8199078343161266]
電力網における異常検出は、電力系統に対するサイバー攻撃による異常を検出し、識別することを目的としている。
本稿では,複数のエンコーダとデコーダを用いて正規サンプルのデータ分布をモデル化し,新しい異常検出手法を提案する。
ネットワーク侵入と電力系統データセットの実験結果から,提案手法の有効性が示された。
論文 参考訳(メタデータ) (2023-03-11T15:49:29Z) - Learning to Learn with Generative Models of Neural Network Checkpoints [71.06722933442956]
ニューラルネットワークのチェックポイントのデータセットを構築し,パラメータの生成モデルをトレーニングする。
提案手法は,幅広い損失プロンプトに対するパラメータの生成に成功している。
我々は、教師付きおよび強化学習における異なるニューラルネットワークアーキテクチャとタスクに本手法を適用した。
論文 参考訳(メタデータ) (2022-09-26T17:59:58Z) - SOME/IP Intrusion Detection using Deep Learning-based Sequential Models
in Automotive Ethernet Networks [2.3204135551124407]
侵入検知システムはサイバー攻撃を検出するために広く利用されている。
本稿では,SOME/IPプロトコル上でのオフライン侵入検出のための深層学習に基づくシーケンシャルモデルを提案する。
論文 参考訳(メタデータ) (2021-08-04T09:58:06Z) - Anomaly Detection on Attributed Networks via Contrastive Self-Supervised
Learning [50.24174211654775]
本論文では,アトリビュートネットワーク上の異常検出のためのコントラスト型自己監視学習フレームワークを提案する。
このフレームワークは、新しいタイプのコントラストインスタンスペアをサンプリングすることで、ネットワークデータからのローカル情報を完全に活用します。
高次元特性と局所構造から情報埋め込みを学習するグラフニューラルネットワークに基づくコントラスト学習モデルを提案する。
論文 参考訳(メタデータ) (2021-02-27T03:17:20Z) - Firearm Detection via Convolutional Neural Networks: Comparing a
Semantic Segmentation Model Against End-to-End Solutions [68.8204255655161]
武器の脅威検出とライブビデオからの攻撃的な行動は、潜在的に致命的な事故の迅速検出と予防に使用できる。
これを実現する一つの方法は、人工知能と、特に画像分析のための機械学習を使用することです。
従来のモノリシックなエンド・ツー・エンドのディープラーニングモデルと、セマンティクスセグメンテーションによって火花を検知する単純なニューラルネットワークのアンサンブルに基づく前述したモデルを比較した。
論文 参考訳(メタデータ) (2020-12-17T15:19:29Z) - Deep Learning based Covert Attack Identification for Industrial Control
Systems [5.299113288020827]
我々は、スマートグリッドに対する秘密攻撃と呼ばれるサイバー攻撃を検出し、診断し、ローカライズするために使用できるデータ駆動フレームワークを開発した。
このフレームワークは、オートエンコーダ、リカレントニューラルネットワーク(RNN)とLong-Short-Term-Memory層、Deep Neural Network(DNN)を組み合わせたハイブリッド設計である。
論文 参考訳(メタデータ) (2020-09-25T17:48:43Z) - Contextual-Bandit Anomaly Detection for IoT Data in Distributed
Hierarchical Edge Computing [65.78881372074983]
IoTデバイスは複雑なディープニューラルネットワーク(DNN)モデルにはほとんど余裕がなく、異常検出タスクをクラウドにオフロードすることは長い遅延を引き起こす。
本稿では,分散階層エッジコンピューティング(HEC)システムを対象とした適応型異常検出手法のデモと構築を行う。
提案手法は,検出タスクをクラウドにオフロードした場合と比較して,精度を犠牲にすることなく検出遅延を著しく低減することを示す。
論文 参考訳(メタデータ) (2020-04-15T06:13:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。