論文の概要: IB-GAN: Disentangled Representation Learning with Information Bottleneck Generative Adversarial Networks
- arxiv url: http://arxiv.org/abs/2510.20165v1
- Date: Thu, 23 Oct 2025 03:24:48 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-25 03:08:17.230069
- Title: IB-GAN: Disentangled Representation Learning with Information Bottleneck Generative Adversarial Networks
- Title(参考訳): IB-GAN:インフォメーション・ボトルネック・ジェネレーション・アドバイザリ・ネットワークを用いたアンタングル型表現学習
- Authors: Insu Jeon, Wonkwang Lee, Myeongjang Pyeon, Gunhee Kim,
- Abstract要約: 本稿では,非交叉表現学習のための新しいGANに基づく教師なしモデルを提案する。
IB-GANのアーキテクチャはInfoGANと部分的に似ているが、重大な違いがある。
IB-GANは最先端のβ-VAEと競合しInfoGANより優れていることを示す。
- 参考スコア(独自算出の注目度): 41.9889029223772
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a new GAN-based unsupervised model for disentangled representation learning. The new model is discovered in an attempt to utilize the Information Bottleneck (IB) framework to the optimization of GAN, thereby named IB-GAN. The architecture of IB-GAN is partially similar to that of InfoGAN but has a critical difference; an intermediate layer of the generator is leveraged to constrain the mutual information between the input and the generated output. The intermediate stochastic layer can serve as a learnable latent distribution that is trained with the generator jointly in an end-to-end fashion. As a result, the generator of IB-GAN can harness the latent space in a disentangled and interpretable manner. With the experiments on dSprites and Color-dSprites dataset, we demonstrate that IB-GAN achieves competitive disentanglement scores to those of state-of-the-art \b{eta}-VAEs and outperforms InfoGAN. Moreover, the visual quality and the diversity of samples generated by IB-GAN are often better than those by \b{eta}-VAEs and Info-GAN in terms of FID score on CelebA and 3D Chairs dataset.
- Abstract(参考訳): 本稿では,非交叉表現学習のための新しいGANに基づく教師なしモデルを提案する。
この新モデルは、Information Bottleneck (IB) フレームワークを GAN の最適化に利用する試みによって発見され、IB-GAN と名付けられた。
IB-GANのアーキテクチャはInfoGANと部分的に似ているが、重要な違いがある。
中間確率層は学習可能な潜伏分布として機能し、発電機との共同でエンドツーエンドで訓練される。
その結果、IB-GANのジェネレータは、非絡み合いで解釈可能な方法で潜伏空間を利用することができる。
dSpritesとColor-dSpritesデータセットの実験により、IB-GANは最先端の \b{eta}-VAE と競合する不整合スコアを達成し、InfoGANより優れていることを示す。
さらに、IB-GANが生成するサンプルの視覚的品質と多様性は、CelebAと3D ChairsデータセットのFIDスコアの点から見ると、 \b{eta}-VAEsとInfo-GANよりも優れていることが多い。
関連論文リスト
- LD-GAN: Low-Dimensional Generative Adversarial Network for Spectral
Image Generation with Variance Regularization [72.4394510913927]
ディープラーニング法はスペクトル画像(SI)計算タスクの最先端技術である。
GANは、データ分散から学習およびサンプリングすることで、多様な拡張を可能にする。
この種のデータの高次元性は、GANトレーニングの収束を妨げるため、GANベースのSI生成は困難である。
本稿では, オートエンコーダ訓練における低次元表現分散を制御し, GANで生成されたサンプルの多様性を高めるための統計正則化を提案する。
論文 参考訳(メタデータ) (2023-04-29T00:25:02Z) - Information-theoretic stochastic contrastive conditional GAN:
InfoSCC-GAN [6.201770337181472]
本稿では,探索可能な潜伏空間を有するコントラスト条件生成対向ネットワーク(Info SCC-GAN)を提案する。
インフォメーションSCC-GANは、入力データと潜時空間表現の間の相互情報の情報理論的定式化に基づいて導出される。
実験により、Info SCC-GANはAFHQとCelebAデータセットの画像生成において、"vanilla" EigenGANよりも優れていることが示された。
論文 参考訳(メタデータ) (2021-12-17T17:56:30Z) - HGAN: Hybrid Generative Adversarial Network [25.940501417539416]
本稿では,自己回帰モデルを用いてデータ密度推定を行うハイブリッド生成逆数ネットワーク(HGAN)を提案する。
GAN定式化における新しい深層構造は、単純なGANトレーニング手法に加えて、自己回帰モデル情報を逆向きに蒸留するために開発されている。
論文 参考訳(メタデータ) (2021-02-07T03:54:12Z) - EC-GAN: Low-Sample Classification using Semi-Supervised Algorithms and
GANs [0.0]
ラベル付きデータによる分類などの画像解析タスクを可能にするため,半教師付き学習が注目されている。
半教師付き分類にgans(generative adrial network)を用いる一般的なアルゴリズムは、分類と識別のための単一のアーキテクチャを共有している。
これにより、各タスクごとに別々のデータ分散に収束するモデルが必要になり、全体的なパフォーマンスが低下する可能性がある。
完全教師付きタスクの分類を改善するために,GANと半教師付きアルゴリズムを用いた新しいGANモデルであるECGANを提案する。
論文 参考訳(メタデータ) (2020-12-26T05:58:00Z) - Improving Generative Adversarial Networks with Local Coordinate Coding [150.24880482480455]
GAN(Generative Adversarial Network)は、事前定義された事前分布から現実的なデータを生成することに成功している。
実際には、意味情報はデータから学んだ潜在的な分布によって表現される。
ローカル座標符号化(LCC)を用いたLCCGANモデルを提案する。
論文 参考訳(メタデータ) (2020-07-28T09:17:50Z) - Discriminator Contrastive Divergence: Semi-Amortized Generative Modeling
by Exploring Energy of the Discriminator [85.68825725223873]
GAN(Generative Adversarial Networks)は、高次元データのモデリングにおいて大きな可能性を秘めている。
本稿では,WGANの識別器の特性を活かした識別器コントラストの多様性について紹介する。
我々は、合成データと実世界の画像生成ベンチマークの両方において、大幅に改善された生成の利点を実証する。
論文 参考訳(メタデータ) (2020-04-05T01:50:16Z) - Brainstorming Generative Adversarial Networks (BGANs): Towards
Multi-Agent Generative Models with Distributed Private Datasets [70.62568022925971]
生成的敵ネットワーク(GAN)は、データ空間を適切に表現する大規模なデータセットによって供給されなければならない。
多くのシナリオでは、利用可能なデータセットは制限され、複数のエージェントに分散する可能性がある。
本稿では,BGAN(Breepstorming GAN)アーキテクチャを提案する。
論文 参考訳(メタデータ) (2020-02-02T02:58:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。