論文の概要: DB-FGA-Net: Dual Backbone Frequency Gated Attention Network for Multi-Class Brain Tumor Classification with Grad-CAM Interpretability
- arxiv url: http://arxiv.org/abs/2510.20299v2
- Date: Sat, 25 Oct 2025 01:40:13 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-28 13:14:10.628517
- Title: DB-FGA-Net: Dual Backbone Frequency Gated Attention Network for Multi-Class Brain Tumor Classification with Grad-CAM Interpretability
- Title(参考訳): DB-FGA-Net:Grad-CAMによるマルチクラス脳腫瘍分類のためのデュアルバックボーン周波数Gated Attention Network
- Authors: Saraf Anzum Shreya, MD. Abu Ismail Siddique, Sharaf Tasnim,
- Abstract要約: 本稿では、VGG16とXceptionをFGAブロックと統合した二重バックボーンネットワークを提案する。
本モデルでは,可変サイズおよび分散データセットに対するロバスト性を示す拡張を伴わず,最先端のパフォーマンスを実現する。
さらに透明性を高めるため、Grad-CAMはモデルが予測している腫瘍領域を可視化するために統合され、モデル予測と臨床解釈可能性のギャップを埋める。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Brain tumors are a challenging problem in neuro-oncology, where early and precise diagnosis is important for successful treatment. Deep learning-based brain tumor classification methods often rely on heavy data augmentation which can limit generalization and trust in clinical applications. In this paper, we propose a double-backbone network integrating VGG16 and Xception with a Frequency-Gated Attention (FGA) Block to capture complementary local and global features. Unlike previous studies, our model achieves state-of-the-art performance without augmentation which demonstrates robustness to variably sized and distributed datasets. For further transparency, Grad-CAM is integrated to visualize the tumor regions based on which the model is giving prediction, bridging the gap between model prediction and clinical interpretability. The proposed framework achieves 99.24\% accuracy on the 7K-DS dataset for the 4-class setting, along with 98.68\% and 99.85\% in the 3-class and 2-class settings, respectively. On the independent 3K-DS dataset, the model generalizes with 95.77\% accuracy, outperforming baseline and state-of-the-art methods. To further support clinical usability, we developed a graphical user interface (GUI) that provides real-time classification and Grad-CAM-based tumor localization. These findings suggest that augmentation-free, interpretable, and deployable deep learning models such as DB-FGA-Net hold strong potential for reliable clinical translation in brain tumor diagnosis.
- Abstract(参考訳): 脳腫瘍は神経腫瘍学において難しい問題であり、早期かつ正確な診断が治療の成功に重要である。
深層学習に基づく脳腫瘍分類法は、しばしば、一般化と臨床応用への信頼を制限する重いデータ拡張に依存している。
本稿では、VGG16とXceptionをFGAブロックと統合した二重バックボーンネットワークを提案する。
従来の研究とは異なり、我々のモデルは拡張なしで最先端のパフォーマンスを達成し、可変サイズの分散データセットに対するロバスト性を示す。
さらに透明性を高めるため、Grad-CAMはモデルが予測している腫瘍領域を可視化するために統合され、モデル予測と臨床解釈可能性のギャップを埋める。
提案したフレームワークは,4クラス設定の7K-DSデータセットの99.24\%,3クラス設定の98.68\%,2クラス設定の99.85\%をそれぞれ達成している。
独立した3K-DSデータセットでは、モデルは95.77\%の精度で一般化され、ベースラインと最先端の手法より優れている。
臨床ユーザビリティをさらに向上するために,リアルタイムな分類とGrad-CAMベースの腫瘍局在を提供するGUIを開発した。
以上の結果から,DB-FGA-Netのような拡張不能,解釈可能,デプロイ可能な深層学習モデルは,脳腫瘍診断における信頼性の高い臨床翻訳の可能性が示唆された。
関連論文リスト
- Advancing Brain Tumor Segmentation via Attention-based 3D U-Net Architecture and Digital Image Processing [0.0]
本研究の目的は,脳腫瘍のセグメンテーションの性能を高めることであり,最終的に診断の信頼性を向上させることである。
提案したモデルは、この目標を達成するために、さまざまなパフォーマンス指標を使用して、BraTS 2020データセットで徹底的に評価され、評価される。
論文 参考訳(メタデータ) (2025-10-21T22:11:19Z) - DRBD-Mamba for Robust and Efficient Brain Tumor Segmentation with Analytical Insights [54.87947751720332]
計算オーバーヘッドを最小限に抑えながら,マルチスケールの長距離依存関係を捕捉する効率的な3次元分割モデルを提案する。
空間充填曲線を利用して3D-to-1D特徴写像の空間的局所性を保ち、計算コストのかかる多軸特徴走査への依存を減らす。
提案モデルでは,高いセグメンテーション精度を維持しながら効率を15倍に向上させ,既存手法に対する堅牢性と計算上の優位性を強調した。
論文 参考訳(メタデータ) (2025-10-16T07:31:21Z) - 3DViT-GAT: A Unified Atlas-Based 3D Vision Transformer and Graph Learning Framework for Major Depressive Disorder Detection Using Structural MRI Data [0.0]
大うつ病 (Major depressive disorder, MDD) は、個人の健康と世界的な公衆衛生の両方に悪影響を及ぼす精神疾患である。
本稿では、視覚変換器(ViT)を用いて、sMRIデータから3次元領域埋め込みを抽出し、グラフニューラルネットワーク(GNN)を分類する統合パイプラインを開発する。
論文 参考訳(メタデータ) (2025-09-15T17:10:39Z) - A Disease-Centric Vision-Language Foundation Model for Precision Oncology in Kidney Cancer [54.58205672910646]
RenalCLIPは、腎腫瘤の特徴、診断、予後のための視覚言語基盤モデルである。
腎がんの完全な臨床ワークフローにまたがる10のコアタスクにおいて、優れたパフォーマンスと優れた一般化性を実現した。
論文 参考訳(メタデータ) (2025-08-22T17:48:19Z) - Fusion-Based Brain Tumor Classification Using Deep Learning and Explainable AI, and Rule-Based Reasoning [0.0]
本研究では,MobileNetV2とDenseNet121畳み込みニューラルネットワーク(CNN)を組み合わせたアンサンブルに基づくディープラーニングフレームワークを提案する。
モデルは、階層化された5倍のクロスバリデーションプロトコルを使用して、Figshareデータセット上でトレーニングされ、評価された。
このアンサンブルは個々のCNNよりも優れた性能を示し、精度は91.7%、精度は91.9%、リコールは91.7%、F1スコアは91.6%だった。
論文 参考訳(メタデータ) (2025-08-09T08:46:36Z) - GANet-Seg: Adversarial Learning for Brain Tumor Segmentation with Hybrid Generative Models [1.0456203870202954]
この研究は、事前訓練されたGANとUnetアーキテクチャを利用した脳腫瘍セグメンテーションのための新しいフレームワークを導入する。
グローバルな異常検出モジュールと改良されたマスク生成ネットワークを組み合わせることで,腫瘍感受性領域を正確に同定する。
マルチモーダルMRIデータと合成画像拡張を用いて、ロバスト性を改善し、限られたアノテートデータセットの課題に対処する。
論文 参考訳(メタデータ) (2025-06-26T13:28:09Z) - DGG-XNet: A Hybrid Deep Learning Framework for Multi-Class Brain Disease Classification with Explainable AI [0.0]
本稿では,VGG16とDenseNet121を統合したハイブリッドディープラーニングモデルDGG-XNetを提案する。
DenseNet121は、高密度接続による機能再利用と効率的な勾配流を促進し、VGG16は強力な階層空間表現に寄与する。
DGG-XNetは91.33%の精度で、精度、リコール、F1スコアは全て91%を超えた。
論文 参考訳(メタデータ) (2025-06-17T10:07:59Z) - MSWAL: 3D Multi-class Segmentation of Whole Abdominal Lesions Dataset [41.69818086021188]
我々は,全腹部病変データセットの最初の3次元マルチクラスであるMSWALを紹介する。
MSWALは、胆石、腎臓石、肝腫瘍、腎臓腫瘍、膵癌、肝嚢胞、腎臓嚢胞など、様々な一般的な病変のカバー範囲を広げている。
Inception nnU-Netは、インセプションモジュールとnnU-Netアーキテクチャを効果的に統合し、異なるフィールドから情報を抽出する新しいセグメンテーションフレームワークである。
論文 参考訳(メタデータ) (2025-03-17T06:31:25Z) - CLIP-Driven Universal Model for Organ Segmentation and Tumor Detection [36.08551407926805]
本稿では,Contrastive Language-Image Pre-trainingから学習したテキストをセグメンテーションモデルに組み込んだCLIP駆動ユニバーサルモデルを提案する。
提案モデルは14のデータセットから作成され、合計3,410個のCTスキャンを使用してトレーニングを行い、さらに3つの追加データセットから6,162個の外部CTスキャンで評価する。
論文 参考訳(メタデータ) (2023-01-02T18:07:44Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
ディープラーニングは、病気の識別性能を改善するための最も強力なコンピュータ支援診断技術となった。
胸部X線撮影では、大規模データの注釈付けには専門的なドメイン知識が必要で、時間を要する。
本論文では、単一モデルにおける疾患同定性能を改善するために、複数対1の分布学習(MODL)とK-nearest neighbor smoothing(KNNS)手法を提案する。
論文 参考訳(メタデータ) (2021-02-26T02:29:30Z) - VoxelHop: Successive Subspace Learning for ALS Disease Classification
Using Structural MRI [30.469124322749828]
Amyotrophic Lateral Sclerosis (ALS) の正確な分類のためのサブスペース学習モデルである VoxelHop を提案する。
一般的な畳み込みニューラルネットワーク(CNN)アーキテクチャと比較して、VoxelHopはモジュール構造と透過構造を持ち、バックプロパゲーションなしではパラメータが少ない。
我々のフレームワークは、異なる画像モダリティを用いて、他の分類タスクに容易に一般化できる。
論文 参考訳(メタデータ) (2021-01-13T15:25:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。