論文の概要: 3DViT-GAT: A Unified Atlas-Based 3D Vision Transformer and Graph Learning Framework for Major Depressive Disorder Detection Using Structural MRI Data
- arxiv url: http://arxiv.org/abs/2509.12143v1
- Date: Mon, 15 Sep 2025 17:10:39 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-16 17:26:23.41592
- Title: 3DViT-GAT: A Unified Atlas-Based 3D Vision Transformer and Graph Learning Framework for Major Depressive Disorder Detection Using Structural MRI Data
- Title(参考訳): 3DViT-GAT:構造MRIデータを用いた大うつ病検出のための統一アトラスベースの3次元視覚変換とグラフ学習フレームワーク
- Authors: Nojod M. Alotaibi, Areej M. Alhothali, Manar S. Ali,
- Abstract要約: 大うつ病 (Major depressive disorder, MDD) は、個人の健康と世界的な公衆衛生の両方に悪影響を及ぼす精神疾患である。
本稿では、視覚変換器(ViT)を用いて、sMRIデータから3次元領域埋め込みを抽出し、グラフニューラルネットワーク(GNN)を分類する統合パイプラインを開発する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Major depressive disorder (MDD) is a prevalent mental health condition that negatively impacts both individual well-being and global public health. Automated detection of MDD using structural magnetic resonance imaging (sMRI) and deep learning (DL) methods holds increasing promise for improving diagnostic accuracy and enabling early intervention. Most existing methods employ either voxel-level features or handcrafted regional representations built from predefined brain atlases, limiting their ability to capture complex brain patterns. This paper develops a unified pipeline that utilizes Vision Transformers (ViTs) for extracting 3D region embeddings from sMRI data and Graph Neural Network (GNN) for classification. We explore two strategies for defining regions: (1) an atlas-based approach using predefined structural and functional brain atlases, and (2) an cube-based method by which ViTs are trained directly to identify regions from uniformly extracted 3D patches. Further, cosine similarity graphs are generated to model interregional relationships, and guide GNN-based classification. Extensive experiments were conducted using the REST-meta-MDD dataset to demonstrate the effectiveness of our model. With stratified 10-fold cross-validation, the best model obtained 78.98% accuracy, 76.54% sensitivity, 81.58% specificity, 81.58% precision, and 78.98% F1-score. Further, atlas-based models consistently outperformed the cube-based approach, highlighting the importance of using domain-specific anatomical priors for MDD detection.
- Abstract(参考訳): 大うつ病 (Major depressive disorder, MDD) は、個人の健康と世界的な公衆衛生の両方に悪影響を及ぼす精神疾患である。
構造磁気共鳴画像(sMRI)とディープラーニング(DL)法を用いたMDDの自動検出は、診断精度の向上と早期介入の実現を約束する。
既存のほとんどの方法は、ボクセルレベルの特徴または事前に定義された脳のアトラスから構築された手作りの地域表現を用いており、複雑な脳のパターンを捉える能力を制限する。
本稿では、視覚変換器(ViT)を用いて、sMRIデータから3次元領域埋め込みを抽出し、グラフニューラルネットワーク(GNN)を分類する統合パイプラインを開発する。
本研究では,(1)事前定義された構造的および機能的脳アトラスを用いたアトラスベースのアプローチ,(2)ViTを直接訓練して一様抽出した3Dパッチから領域を識別する立方体ベースの手法について検討する。
さらに、コサイン類似性グラフを生成し、地域間関係をモデル化し、GNNに基づく分類をガイドする。
モデルの有効性を示すために,REST-meta-MDDデータセットを用いて大規模な実験を行った。
層状10倍のクロスバリデーションにより、最良のモデルは78.98%の精度、76.54%の感度、81.58%の特異性、81.58%の精度、78.98%のF1スコアを得た。
さらに、アトラスベースのモデルは立方体ベースのアプローチを一貫して上回り、MDD検出にドメイン固有の解剖学的事前の使用の重要性を強調した。
関連論文リスト
- Missing Data Estimation for MR Spectroscopic Imaging via Mask-Free Deep Learning Methods [0.0]
MRSIメタボリックマップに欠落したデータを推定するための,最初のディープラーニングベースのマスフリーフレームワークを提案する。
我々のモデルは、リトレーニングやマスク入力を必要とせず、実世界のデータセットによく当てはまる。
論文 参考訳(メタデータ) (2025-05-11T01:56:26Z) - Abnormality-Driven Representation Learning for Radiology Imaging [0.8321462983924758]
病変強調型コントラスト学習(LeCL)は,CTスキャンの異なる部位にわたる2次元軸方向スライスにおける異常により引き起こされる視覚的表現を得るための新しい手法である。
本研究は, 腫瘍病変位置, 肺疾患検出, 患者ステージングの3つの臨床的課題に対するアプローチを, 最先端の4つの基礎モデルと比較した。
論文 参考訳(メタデータ) (2024-11-25T13:53:26Z) - 2D and 3D Deep Learning Models for MRI-based Parkinson's Disease Classification: A Comparative Analysis of Convolutional Kolmogorov-Arnold Networks, Convolutional Neural Networks, and Graph Convolutional Networks [0.0]
本研究はパーキンソン病の診断にConvolutional Kolmogorov-Arnold Networks(ConvKANs)を適用した。
ConvKANは、構造MRIを用いたPD分類のために、学習可能なアクティベーション機能を畳み込み層に統合する。
医用画像用ConvKANの最初の3D実装について紹介し、その性能を畳み込みニューラルネットワーク(CNN)とグラフ畳み込みニューラルネットワーク(GCN)と比較した。
これらの知見は, PD検出に対するConvKANsの可能性を強調し, 脳の微妙な変化を捉える上での3D解析の重要性を強調し, データセット間の一般化の課題を浮き彫りにしている。
論文 参考訳(メタデータ) (2024-07-24T16:04:18Z) - The effect of data augmentation and 3D-CNN depth on Alzheimer's Disease
detection [51.697248252191265]
この研究は、データハンドリング、実験設計、モデル評価に関するベストプラクティスを要約し、厳密に観察する。
我々は、アルツハイマー病(AD)の検出に焦点を当て、医療における課題のパラダイム的な例として機能する。
このフレームワークでは,3つの異なるデータ拡張戦略と5つの異なる3D CNNアーキテクチャを考慮し,予測15モデルを訓練する。
論文 参考訳(メタデータ) (2023-09-13T10:40:41Z) - Source-Free Collaborative Domain Adaptation via Multi-Perspective
Feature Enrichment for Functional MRI Analysis [55.03872260158717]
安静時MRI機能(rs-fMRI)は、神経疾患の分析を助けるために多地点で研究されている。
ソース領域とターゲット領域の間のfMRIの不均一性を低減するための多くの手法が提案されている。
しかし、マルチサイト研究における懸念やデータストレージの負担のため、ソースデータの取得は困難である。
我々は、fMRI解析のためのソースフリー協調ドメイン適応フレームワークを設計し、事前訓練されたソースモデルとラベルなしターゲットデータのみにアクセスできるようにする。
論文 参考訳(メタデータ) (2023-08-24T01:30:18Z) - Lightweight 3D Convolutional Neural Network for Schizophrenia diagnosis
using MRI Images and Ensemble Bagging Classifier [1.487444917213389]
本稿では,MRI画像を用いた統合失調症診断のための軽量3次元畳み込みニューラルネットワーク(CNN)フレームワークを提案する。
精度は92.22%、感度94.44%、特異度90%、精度90.43%、リコール94.44%、F1スコア92.39%、G平均92.19%である。
論文 参考訳(メタデータ) (2022-11-05T10:27:37Z) - Deep Implicit Statistical Shape Models for 3D Medical Image Delineation [47.78425002879612]
解剖学的構造の3次元デライン化は、医用画像解析の基本的な目標である。
ディープラーニング以前は、解剖学的制約を課し高品質の表面を作り出す統計的形状モデルはコア技術だった。
我々は,CNNの表現力とSSMの頑健さを合体させるデライン化の新しい手法であるディープ暗黙的統計的形状モデル(DISSMs)を提案する。
論文 参考訳(メタデータ) (2021-04-07T01:15:06Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
ディープラーニングは、病気の識別性能を改善するための最も強力なコンピュータ支援診断技術となった。
胸部X線撮影では、大規模データの注釈付けには専門的なドメイン知識が必要で、時間を要する。
本論文では、単一モデルにおける疾患同定性能を改善するために、複数対1の分布学習(MODL)とK-nearest neighbor smoothing(KNNS)手法を提案する。
論文 参考訳(メタデータ) (2021-02-26T02:29:30Z) - Revisiting 3D Context Modeling with Supervised Pre-training for
Universal Lesion Detection in CT Slices [48.85784310158493]
CTスライスにおける普遍的病変検出のための3Dコンテキスト強化2D特徴を効率的に抽出するための修飾擬似3次元特徴ピラミッドネットワーク(MP3D FPN)を提案する。
新たな事前学習手法により,提案したMP3D FPNは,DeepLesionデータセット上での最先端検出性能を実現する。
提案された3Dプリトレーニングウェイトは、他の3D医療画像分析タスクのパフォーマンスを高めるために使用できる。
論文 参考訳(メタデータ) (2020-12-16T07:11:16Z) - Fader Networks for domain adaptation on fMRI: ABIDE-II study [68.5481471934606]
我々は3次元畳み込みオートエンコーダを用いて、無関係な空間画像表現を実現するとともに、ABIDEデータ上で既存のアプローチより優れていることを示す。
論文 参考訳(メタデータ) (2020-10-14T16:50:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。