論文の概要: RAGRank: Using PageRank to Counter Poisoning in CTI LLM Pipelines
- arxiv url: http://arxiv.org/abs/2510.20768v1
- Date: Thu, 23 Oct 2025 17:43:00 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-25 03:08:18.515417
- Title: RAGRank: Using PageRank to Counter Poisoning in CTI LLM Pipelines
- Title(参考訳): RAGRank: CTI LLMパイプラインにおけるPageRankによるポジショニング対策
- Authors: Austin Jia, Avaneesh Ramesh, Zain Shamsi, Daniel Zhang, Alex Liu,
- Abstract要約: Retrieval-Augmented Generation (RAG) は、サイバー脅威情報システムにおけるLLM(Large Language Model)の使用を運用するための主要なアーキテクチャパターンとして登場した。
コーパスにソース信頼性アルゴリズムを適用することにより,現代のRAG防御の堅牢性を向上できることを示す。
- 参考スコア(独自算出の注目度): 0.9144793163215507
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Retrieval-Augmented Generation (RAG) has emerged as the dominant architectural pattern to operationalize Large Language Model (LLM) usage in Cyber Threat Intelligence (CTI) systems. However, this design is susceptible to poisoning attacks, and previously proposed defenses can fail for CTI contexts as cyber threat information is often completely new for emerging attacks, and sophisticated threat actors can mimic legitimate formats, terminology, and stylistic conventions. To address this issue, we propose that the robustness of modern RAG defenses can be accelerated by applying source credibility algorithms on corpora, using PageRank as an example. In our experiments, we demonstrate quantitatively that our algorithm applies a lower authority score to malicious documents while promoting trusted content, using the standardized MS MARCO dataset. We also demonstrate proof-of-concept performance of our algorithm on CTI documents and feeds.
- Abstract(参考訳): Retrieval-Augmented Generation (RAG)は、サイバー脅威インテリジェンス(CTI)システムにおけるLLM(Large Language Model)の使用を運用するための主要なアーキテクチャパターンとして登場した。
しかし、この設計は毒殺攻撃の影響を受けやすく、サイバー脅威情報はしばしば新興攻撃にとって全く新しいものであり、洗練された脅威アクターは正統なフォーマット、用語、スタイリスティックな慣習を模倣することができるため、これまで提案されていた防衛はCTIの文脈で失敗する可能性がある。
この問題に対処するために、PageRankを例として、コーパスにソース信頼性アルゴリズムを適用することにより、現代のRAG防御の堅牢性を加速できることを示す。
本実験では,MS MARCOデータセットを用いて,信頼度を向上しつつ,悪意のある文書に低信頼度スコアを適用することを定量的に示す。
また,CTI文書やフィードに対して,提案アルゴリズムの概念実証性能を示す。
関連論文リスト
- Algorithms for Adversarially Robust Deep Learning [58.656107500646364]
望ましいロバスト性を示すアルゴリズムの設計に向けた最近の進歩について論じる。
医用画像,分子識別,画像分類における最先端の一般化を実現するアルゴリズムを提案する。
我々は、堅牢な言語ベースのエージェントを設計するための進歩のフロンティアとして、新たな攻撃と防御を提案する。
論文 参考訳(メタデータ) (2025-09-23T14:48:58Z) - Graph Representation-based Model Poisoning on Federated Large Language Models [3.5233863453805143]
フェデレートされた大規模言語モデル(FedLLMs)は、データのプライバシを保持しながら、無線ネットワーク内で強力な生成機能を実現する。
本稿では,FedLLMのモデル中毒技術と既存の防御機構の最近の進歩について概説する。
さらに、グラフ表現に基づくモデル中毒(GRMP)は、良質なクライアント勾配間の高次相関を利用して、悪意ある更新を正当なものと区別できないものにする新興攻撃パラダイムである。
論文 参考訳(メタデータ) (2025-07-02T13:20:52Z) - Cannot See the Forest for the Trees: Invoking Heuristics and Biases to Elicit Irrational Choices of LLMs [83.11815479874447]
本研究では,人間の認知における認知的分解と偏見に触発された新しいジェイルブレイク攻撃フレームワークを提案する。
我々は、悪意のあるプロンプトの複雑さと関連バイアスを減らし、認知的分解を用いて、プロンプトを再編成する。
また、従来の二分的成功または失敗のパラダイムを超越したランキングベースの有害度評価指標も導入する。
論文 参考訳(メタデータ) (2025-05-03T05:28:11Z) - OCCULT: Evaluating Large Language Models for Offensive Cyber Operation Capabilities [0.0]
我々は、実世界の攻撃的サイバー操作の実現とスケーリングに向けたAIの進歩を評価するための新しいアプローチを実証する。
我々は、サイバーセキュリティの専門家が厳格かつ反復可能な測定に貢献できる軽量な運用評価フレームワークであるOCCULTについて詳述する。
私たちは、現実的なサイバー脅威をスケールするためにAIが使用されるリスクが、最近著しく進歩していることに気付きました。
論文 参考訳(メタデータ) (2025-02-18T19:33:14Z) - CTINexus: Automatic Cyber Threat Intelligence Knowledge Graph Construction Using Large Language Models [49.657358248788945]
サイバー脅威インテリジェンス(CTI)レポートのテキスト記述は、サイバー脅威に関する豊富な知識源である。
現在のCTI知識抽出法は柔軟性と一般化性に欠ける。
我々は,データ効率の高いCTI知識抽出と高品質サイバーセキュリティ知識グラフ(CSKG)構築のための新しいフレームワークであるCTINexusを提案する。
論文 参考訳(メタデータ) (2024-10-28T14:18:32Z) - Cyber Knowledge Completion Using Large Language Models [1.4883782513177093]
IoT(Internet of Things)をCPS(Cyber-Physical Systems)に統合することで,サイバー攻撃面が拡大した。
CPSのリスクを評価することは、不完全で時代遅れのサイバーセキュリティ知識のため、ますます困難になっている。
近年のLarge Language Models (LLMs) の進歩は、サイバー攻撃による知識の完成を促進するユニークな機会となる。
論文 参考訳(メタデータ) (2024-09-24T15:20:39Z) - Unscrambling the Rectification of Adversarial Attacks Transferability
across Computer Networks [4.576324217026666]
畳み込みニューラルネットワーク(CNN)モデルは、最先端のパフォーマンスを達成する上で重要な役割を果たす。
CNNは敵の攻撃を受けやすいため、妥協することができる。
本稿では,攻撃の強さを向上し,CNNにおける敵例の伝達可能性を評価するための,新しい包括的手法を提案する。
論文 参考訳(メタデータ) (2023-10-26T22:36:24Z) - Looking Beyond IoCs: Automatically Extracting Attack Patterns from
External CTI [3.871148938060281]
LADDERは、大規模にサイバー脅威情報レポートからテキストベースの攻撃パターンを抽出できるフレームワークである。
実世界のシナリオにおけるLADDERの適用を実証するためのユースケースをいくつか提示する。
論文 参考訳(メタデータ) (2022-11-01T12:16:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。