論文の概要: DispatchMAS: Fusing taxonomy and artificial intelligence agents for emergency medical services
- arxiv url: http://arxiv.org/abs/2510.21228v1
- Date: Fri, 24 Oct 2025 08:01:21 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-28 06:57:23.397826
- Title: DispatchMAS: Fusing taxonomy and artificial intelligence agents for emergency medical services
- Title(参考訳): DispatchMAS:緊急医療サービスのための分類学と人工知能エージェントの融合
- Authors: Xiang Li, Huizi Yu, Wenkong Wang, Yiran Wu, Jiayan Zhou, Wenyue Hua, Xinxin Lin, Wenjia Tan, Lexuan Zhu, Bingyi Chen, Guang Chen, Ming-Li Chen, Yang Zhou, Zhao Li, Themistocles L. Assimes, Yongfeng Zhang, Qingyun Wu, Xin Ma, Lingyao Li, Lizhou Fan,
- Abstract要約: 大規模言語モデル (LLM) とマルチエージェントシステム (MAS) は、ディスパッチを増強する機会を提供する。
本研究の目的は,現実的なシナリオをシミュレートする分類基盤型マルチエージェントシステムの開発と評価である。
- 参考スコア(独自算出の注目度): 49.70819009392778
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Objective: Emergency medical dispatch (EMD) is a high-stakes process challenged by caller distress, ambiguity, and cognitive load. Large Language Models (LLMs) and Multi-Agent Systems (MAS) offer opportunities to augment dispatchers. This study aimed to develop and evaluate a taxonomy-grounded, LLM-powered multi-agent system for simulating realistic EMD scenarios. Methods: We constructed a clinical taxonomy (32 chief complaints, 6 caller identities from MIMIC-III) and a six-phase call protocol. Using this framework, we developed an AutoGen-based MAS with Caller and Dispatcher Agents. The system grounds interactions in a fact commons to ensure clinical plausibility and mitigate misinformation. We used a hybrid evaluation framework: four physicians assessed 100 simulated cases for "Guidance Efficacy" and "Dispatch Effectiveness," supplemented by automated linguistic analysis (sentiment, readability, politeness). Results: Human evaluation, with substantial inter-rater agreement (Gwe's AC1 > 0.70), confirmed the system's high performance. It demonstrated excellent Dispatch Effectiveness (e.g., 94 % contacting the correct potential other agents) and Guidance Efficacy (advice provided in 91 % of cases), both rated highly by physicians. Algorithmic metrics corroborated these findings, indicating a predominantly neutral affective profile (73.7 % neutral sentiment; 90.4 % neutral emotion), high readability (Flesch 80.9), and a consistently polite style (60.0 % polite; 0 % impolite). Conclusion: Our taxonomy-grounded MAS simulates diverse, clinically plausible dispatch scenarios with high fidelity. Findings support its use for dispatcher training, protocol evaluation, and as a foundation for real-time decision support. This work outlines a pathway for safely integrating advanced AI agents into emergency response workflows.
- Abstract(参考訳): 目的:救急医療派遣(EMD)は、呼び出し者の苦痛、あいまいさ、認知的負荷に悩まされる高額なプロセスである。
大規模言語モデル (LLM) とマルチエージェントシステム (MAS) は、ディスパッチを増強する機会を提供する。
本研究の目的は,現実的なEMDシナリオをシミュレートする,分類学的なLLMを用いたマルチエージェントシステムの開発と評価である。
方法: 臨床分類(主訴32名, MIMIC-III6名)と6段階コールプロトコルを構築した。
このフレームワークを用いて,Caller と Dispatcher Agents を用いた AutoGen ベースのMAS を開発した。
このシステムは、臨床的妥当性を確保し、誤情報を軽減するために、事実の共通点における相互作用を基盤とする。
4名の医師が, 自動言語分析(感性, 可読性, 礼儀正しさ)で補足した「指導効果」と「散布効果」を100例評価した。
結果: レータ間契約(Gwe's AC1 > 0.70)による人的評価により, システムの性能が向上した。
優れたディスパッチ効果 (例, 94 %) とガイダンス効果 (91 %) を示し, いずれも医師が高い評価を得た。
アルゴリズムのメトリクスはこれらの知見を裏付け、主に中立的な感情プロファイル(中立感情73.7%、中立感情90.4%)、高い可読性(フレッシュ80.9)、一貫した丁寧なスタイル(60.0%の丁寧さ、0%のインポライト)を示す。
結論: 分類学を基盤としたMASは, 高忠実度で多種多様かつ臨床的に妥当なディスパッチシナリオをシミュレートする。
Findingsはディスパッチトレーニング、プロトコル評価、およびリアルタイム意思決定支援の基盤としての利用をサポートする。
この作業は、高度なAIエージェントを緊急対応ワークフローに安全に統合するための経路を概説する。
関連論文リスト
- Organ-Agents: Virtual Human Physiology Simulator via LLMs [66.40796430669158]
オルガン-エージェント(Organ-Agents)は、LDM駆動のエージェントを介して人間の生理学をシミュレートする多エージェントフレームワークである。
症例は7,134例,コントロール7,895例で,9系統および125変数にわたる高分解能トラジェクトリを作成した。
臓器抗原は4,509人の保留患者に対して高いシミュレーション精度を達成し, システムごとのMSE0.16とSOFA系重症度層間の堅牢性を示した。
論文 参考訳(メタデータ) (2025-08-20T01:58:45Z) - TAMA: A Human-AI Collaborative Thematic Analysis Framework Using Multi-Agent LLMs for Clinical Interviews [54.35097932763878]
Thematic Analysis (TA) は、構造化されていないテキストデータの潜在意味を明らかにするために広く使われている定性的手法である。
本稿では,多エージェントLEMを用いた人間とAIの協調的テーマ分析フレームワークTAMAを提案する。
TAMA は既存の LLM 支援TA アプローチよりも優れており,高い主題的ヒット率,カバレッジ,独特性を実現している。
論文 参考訳(メタデータ) (2025-03-26T15:58:16Z) - Structured Outputs Enable General-Purpose LLMs to be Medical Experts [50.02627258858336]
大規模言語モデル(LLM)は、しばしばオープンエンドの医学的問題に苦しむ。
本稿では,構造化医療推論を利用した新しいアプローチを提案する。
我々の手法は85.8のファクチュアリティスコアを達成し、微調整されたモデルを上回る。
論文 参考訳(メタデータ) (2025-03-05T05:24:55Z) - Simulated patient systems are intelligent when powered by large language model-based AI agents [32.73072809937573]
我々は,大規模言語モデルに基づくAIエージェントを用いた,インテリジェントシミュレートされた患者システムAIatientを開発した。
このシステムにはRetrieval Augmented Generationフレームワークが組み込まれており、複雑な推論のために6つのタスク固有のLLMベースのAIエージェントが使用されている。
シミュレーションの現実のために、このシステムはAIPatient KG (Knowledge Graph) も利用している。
論文 参考訳(メタデータ) (2024-09-27T17:17:15Z) - AgentClinic: a multimodal agent benchmark to evaluate AI in simulated clinical environments [2.567146936147657]
シミュレーションされた臨床環境における大規模言語モデル(LLM)の評価のためのマルチモーダルエージェントベンチマークであるAgentClinicを紹介する。
我々は,AgentClinicの逐次決定形式におけるMedQA問題の解決が極めて困難であることに気付き,診断精度が元の精度の10分の1以下に低下することを発見した。
論文 参考訳(メタデータ) (2024-05-13T17:38:53Z) - Autonomous Artificial Intelligence Agents for Clinical Decision Making in Oncology [0.6397820821509177]
本稿では,大規模言語モデル(LLM)を中心的推論エンジンとして活用する,マルチモーダル医療用AIの代替手法を提案する。
このエンジンは、医療用AIツールのセットを自律的に調整し、デプロイする。
適切なツール(97%)、正しい結論(93.6%)、完全(94%)、個人患者に有用な推奨(89.2%)を提示する能力が高いことを示す。
論文 参考訳(メタデータ) (2024-04-06T15:50:19Z) - AI Hospital: Benchmarking Large Language Models in a Multi-agent Medical Interaction Simulator [69.51568871044454]
我々は,emphDoctorをプレイヤとして,NPC間の動的医療相互作用をシミュレーションするフレームワークであるtextbfAI Hospitalを紹介した。
この設定は臨床シナリオにおけるLCMの現実的な評価を可能にする。
高品質な中国の医療記録とNPCを利用したマルチビュー医療評価ベンチマークを開発した。
論文 参考訳(メタデータ) (2024-02-15T06:46:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。