論文の概要: Enhancing Social Robots through Resilient AI
- arxiv url: http://arxiv.org/abs/2510.21469v1
- Date: Fri, 24 Oct 2025 13:55:45 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-28 09:00:15.495675
- Title: Enhancing Social Robots through Resilient AI
- Title(参考訳): レジリエントAIによるソーシャルロボットの強化
- Authors: Domenico Palmisano, Giuseppe Palestra, Berardina Nadja De Carolis,
- Abstract要約: 社会ロボットは、医療、教育、日常生活といった繊細な分野にますます統合されている。
本稿では、レジリエンスが社会ロボットの基本的な特徴であることを示す。
- 参考スコア(独自算出の注目度): 0.4970364068620607
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: As artificial intelligence continues to advance and becomes more integrated into sensitive areas like healthcare, education, and everyday life, it's crucial for these systems to be both resilient and robust. This paper shows how resilience is a fundamental characteristic of social robots, which, through it, ensure trust in the robot itself-an essential element especially when operating in contexts with elderly people, who often have low trust in these systems. Resilience is therefore the ability to operate under adverse or stressful conditions, even when degraded or weakened, while maintaining essential operational capabilities.
- Abstract(参考訳): 人工知能が進歩し続け、医療、教育、日常生活といった繊細な分野に統合されるにつれて、これらのシステムはレジリエンスと堅牢性の両方で不可欠です。
本稿では,社会ロボットのレジリエンスが,ロボット自体の信頼を確実にする上での基本的な特徴であることを示す。
したがって、回復力は、本質的な運用能力を維持しながら、劣化または弱体化しても、有害またはストレスの多い条件下での運用能力である。
関連論文リスト
- Mastering Contact-rich Tasks by Combining Soft and Rigid Robotics with Imitation Learning [4.986982677009744]
ソフトロボットはロボットシステムの利用に革命をもたらす可能性がある。
従来の剛体ロボットは高い精度と再現性を提供するが、ソフトロボットの柔軟性は欠如している。
この研究は、剛性マニピュレータと完全に発達したソフトアームを統合する、新しいハイブリッドロボットプラットフォームを提示する。
論文 参考訳(メタデータ) (2024-10-10T10:18:03Z) - Towards Privacy-Aware and Personalised Assistive Robots: A User-Centred Approach [55.5769013369398]
この研究は、フェデレートラーニング(FL)のようなユーザー中心のプライバシーに配慮した技術のパイオニアである。
FLは機密データを共有せずに協調学習を可能にし、プライバシとスケーラビリティの問題に対処する。
この作業には、スマート車椅子アシストのためのソリューションの開発、ユーザの独立性の向上、幸福感の向上が含まれる。
論文 参考訳(メタデータ) (2024-05-23T13:14:08Z) - Embodied Neuromorphic Artificial Intelligence for Robotics: Perspectives, Challenges, and Research Development Stack [7.253801704452419]
スパイキングニューラルネットワーク(SNN)によるニューロモルフィックコンピューティングの最近の進歩は、ロボット工学の具体的インテリジェンスを可能にする可能性を実証している。
本稿では, ロボットシステムにおいて, エンボディ型ニューロモーフィックAIを実現する方法について考察する。
論文 参考訳(メタデータ) (2024-04-04T09:52:22Z) - Common (good) practices measuring trust in HRI [55.2480439325792]
ロボットへの信頼は、人々の日常生活にロボットを取り入れるのに欠かせないと広く信じられている。
研究者たちは、人々がロボットをさまざまな方法で信頼する方法を模索してきた。
ほとんどのロボティクス学者は、信頼のレベルが不足すると解脱のリスクが生じることに同意する。
論文 参考訳(メタデータ) (2023-11-20T20:52:10Z) - Data-driven emotional body language generation for social robotics [58.88028813371423]
社会ロボティクスでは、人間型ロボットに感情の身体的表現を生成する能力を与えることで、人間とロボットの相互作用とコラボレーションを改善することができる。
我々は、手作業で設計されたいくつかの身体表現から学習する深層学習データ駆動フレームワークを実装した。
評価実験の結果, 生成した表現の人間同型とアニマシーは手作りの表現と異なる認識が得られなかった。
論文 参考訳(メタデータ) (2022-05-02T09:21:39Z) - Revisiting the Adversarial Robustness-Accuracy Tradeoff in Robot
Learning [121.9708998627352]
近年の研究では、現実的なロボット学習の応用において、対人訓練の効果が公平なトレードオフを起こさないことが示されている。
本研究は,ロボット学習におけるロバストネスと精度のトレードオフを再考し,最近のロバストトレーニング手法と理論の進歩により,現実のロボット応用に適した対人トレーニングが可能かどうかを解析する。
論文 参考訳(メタデータ) (2022-04-15T08:12:15Z) - A General, Evolution-Inspired Reward Function for Social Robotics [0.0]
本稿では,ソーシャルロボティクスにおける強化学習エージェントの展開に必要なリアルタイムかつ高密度な報酬機能を提供するメカニズムとして,ソーシャル・リワード機能を提案する。
ソーシャル・リワード・ファンクション(Social Reward Function)は、単純で安定的で文化に依存しない報酬機能を提供することを目的として、人間の遺伝的に与えられた社会的知覚能力を忠実に模倣するように設計されている。
論文 参考訳(メタデータ) (2022-02-01T18:05:31Z) - Beyond Robustness: A Taxonomy of Approaches towards Resilient
Multi-Robot Systems [41.71459547415086]
我々はエージェントとマルチロボットシステムのネットワークにおけるレジリエンスの達成方法を分析する。
我々はレジリエンスがエンジニアリング設計の中心となる必要があると主張している。
論文 参考訳(メタデータ) (2021-09-25T11:25:02Z) - Cognitive architecture aided by working-memory for self-supervised
multi-modal humans recognition [54.749127627191655]
人間パートナーを認識する能力は、パーソナライズされた長期的な人間とロボットの相互作用を構築するための重要な社会的スキルです。
ディープラーニングネットワークは最先端の結果を達成し,そのような課題に対処するための適切なツールであることが実証された。
1つの解決策は、ロボットに自己スーパービジョンで直接の感覚データから学習させることである。
論文 参考訳(メタデータ) (2021-03-16T13:50:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。