論文の概要: Hybrid Deep Learning Framework for Enhanced Diabetic Retinopathy Detection: Integrating Traditional Features with AI-driven Insights
- arxiv url: http://arxiv.org/abs/2510.21810v1
- Date: Tue, 21 Oct 2025 09:50:16 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-28 17:41:21.904872
- Title: Hybrid Deep Learning Framework for Enhanced Diabetic Retinopathy Detection: Integrating Traditional Features with AI-driven Insights
- Title(参考訳): 拡張糖尿病網膜症検出のためのハイブリッドディープラーニングフレームワーク:従来の特徴とAIによる洞察の統合
- Authors: Arpan Maity, Aviroop Pal, MD. Samiul Islam, Tamal Ghosh,
- Abstract要約: 糖尿病網膜症(Dia-betes Mellitus, DM)は、特にインドにおいて主要な国際的関心事である。
基底画像は、微妙な網膜病変を検出することによって正確な診断を支援する。
本稿では,従来の特徴抽出とディープラーニング(DL)を組み合わせたハイブリッド診断フレームワークを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Diabetic Retinopathy (DR), a vision-threatening complication of Dia-betes Mellitus (DM), is a major global concern, particularly in India, which has one of the highest diabetic populations. Prolonged hyperglycemia damages reti-nal microvasculature, leading to DR symptoms like microaneurysms, hemor-rhages, and fluid leakage, which, if undetected, cause irreversible vision loss. Therefore, early screening is crucial as DR is asymptomatic in its initial stages. Fundus imaging aids precise diagnosis by detecting subtle retinal lesions. This paper introduces a hybrid diagnostic framework combining traditional feature extraction and deep learning (DL) to enhance DR detection. While handcrafted features capture key clinical markers, DL automates hierarchical pattern recog-nition, improving early diagnosis. The model synergizes interpretable clinical data with learned features, surpassing standalone DL approaches that demon-strate superior classification and reduce false negatives. This multimodal AI-driven approach enables scalable, accurate DR screening, crucial for diabetes-burdened regions.
- Abstract(参考訳): 糖尿病網膜症 (Dia-betes Mellitus, DM) は、特にインドでは、糖尿病の人口が最も多い。
長時間の高血糖は後部微小血管に損傷を与え、微小動脈瘤、出血、水漏れなどのDR症状を引き起こす。
したがって、初期のスクリーニングはDRが初期において無症状であることから重要である。
基底画像は、微妙な網膜病変を検出することによって正確な診断を支援する。
本稿では,従来の特徴抽出とディープラーニング(DL)を組み合わせたハイブリッド診断フレームワークを提案する。
手作りの機能は重要な臨床マーカーを捉えるが、DLは階層的パターンのレゴジションを自動化し、早期診断を改善する。
このモデルは、解釈可能な臨床データを学習特徴と相乗効果し、スタンドアロンのDLアプローチを超越し、より優れた分類を実証し、偽陰性を減らす。
このマルチモーダルAI駆動のアプローチは、スケーラブルで正確なDRスクリーニングを可能にする。
関連論文リスト
- An Explainable Hybrid AI Framework for Enhanced Tuberculosis and Symptom Detection [55.35661671061754]
結核は、特に資源に制限された遠隔地において、重要な世界的な健康問題である。
本稿では, 胸部X線による疾患および症状の検出を, 2つの頭部と自己監督頭部を統合することで促進する枠組みを提案する。
本モデルでは, 新型コロナウイルス, 結核, 正常症例の鑑別で98.85%の精度が得られ, マルチラベル症状検出では90.09%のマクロF1スコアが得られた。
論文 参考訳(メタデータ) (2025-10-21T17:18:55Z) - Design and Validation of a Responsible Artificial Intelligence-based System for the Referral of Diabetic Retinopathy Patients [65.57160385098935]
糖尿病網膜症の早期発見は、視力喪失のリスクを最大95%減少させる可能性がある。
我々は、AIライフサイクル全体にわたる倫理的原則を取り入れた、DRスクリーニングのための責任あるAIシステムであるRAIS-DRを開発した。
当科におけるRAIS-DRをFDA認可のEyeArtシステムと比較した。
論文 参考訳(メタデータ) (2025-08-17T21:54:11Z) - Parameterized Diffusion Optimization enabled Autoregressive Ordinal Regression for Diabetic Retinopathy Grading [53.11883409422728]
本研究は, AOR-DRと呼ばれる新しい自己回帰的順序回帰法を提案する。
我々は,糖尿病網膜症分類タスクを,前ステップの予測と抽出画像の特徴を融合させることにより,一連の順序段階に分解する。
拡散過程を利用して条件付き確率モデリングを行い、連続的グローバルな画像特徴を自己回帰に利用できるようにする。
論文 参考訳(メタデータ) (2025-07-07T13:22:35Z) - VR-FuseNet: A Fusion of Heterogeneous Fundus Data and Explainable Deep Network for Diabetic Retinopathy Classification [0.0]
本稿では,VR-FuseNetと呼ばれる新しいハイブリッドディープラーニングモデルを提案することによって,糖尿病網膜症自動検出のための包括的アプローチを提案する。
提案したVR-FuseNetモデルは、最先端の畳み込みニューラルネットワークであるVGG19と、その深い階層的特徴抽出で知られるResNet50V2の強みを組み合わせたものだ。
このモデルは、糖尿病網膜症分類タスクにおけるハイブリッド特徴抽出の有効性を示すすべてのパフォーマンス指標において、個々のアーキテクチャよりも優れている。
論文 参考訳(メタデータ) (2025-04-30T09:38:47Z) - Strategy for Rapid Diabetic Retinopathy Exposure Based on Enhanced
Feature Extraction Processing [0.0]
本研究の目的は, 糖尿病網膜症の診断を改善するために, 時間的DR識別のための深層学習モデルを開発することである。
提案モデルでは,早期に網膜画像から様々な病変を検出する。
論文 参考訳(メタデータ) (2023-05-08T14:17:33Z) - Automatic Assessment of Alzheimer's Disease Diagnosis Based on Deep
Learning Techniques [111.165389441988]
本研究では, MRI(sagittal magnetic resonance images)における疾患の存在を自動的に検出するシステムを開発する。
矢状面MRIは一般的には使われていないが、この研究は、少なくとも、ADを早期に同定する他の平面からのMRIと同じくらい効果があることを証明した。
本研究は,これらの分野でDLモデルを構築できることを実証する一方,TLは少ない例でタスクを完了するための必須のツールである。
論文 参考訳(メタデータ) (2021-05-18T11:37:57Z) - An Interpretable Multiple-Instance Approach for the Detection of
referable Diabetic Retinopathy from Fundus Images [72.94446225783697]
基礎画像における参照糖尿病網膜症検出のための機械学習システムを提案する。
画像パッチから局所情報を抽出し,アテンション機構により効率的に組み合わせることで,高い分類精度を実現することができる。
我々は,現在入手可能な網膜画像データセットに対するアプローチを評価し,最先端の性能を示す。
論文 参考訳(メタデータ) (2021-03-02T13:14:15Z) - Sea-Net: Squeeze-And-Excitation Attention Net For Diabetic Retinopathy
Grading [9.181677987146418]
糖尿病は個人で最も一般的な病気の1つである。
糖尿病網膜症 (DR) は糖尿病の合併症であり、失明を引き起こす可能性がある。
網膜画像に基づくDRグレーディングは、治療計画のための診断と予後に優れた価値を提供する。
論文 参考訳(メタデータ) (2020-10-29T03:48:01Z) - A Benchmark for Studying Diabetic Retinopathy: Segmentation, Grading,
and Transferability [76.64661091980531]
糖尿病患者は糖尿病網膜症(DR)を発症するリスクがある
コンピュータ支援型DR診断は、DRの早期検出と重度評価のための有望なツールである。
このデータセットは、ピクセルレベルのDR関連病変アノテーションを持つ1,842枚の画像と、6人の眼科医によって評価された画像レベルのラベルを持つ1,000枚の画像を有する。
論文 参考訳(メタデータ) (2020-08-22T07:48:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。