論文の概要: Sea-Net: Squeeze-And-Excitation Attention Net For Diabetic Retinopathy
Grading
- arxiv url: http://arxiv.org/abs/2010.15344v1
- Date: Thu, 29 Oct 2020 03:48:01 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-01 22:26:31.413701
- Title: Sea-Net: Squeeze-And-Excitation Attention Net For Diabetic Retinopathy
Grading
- Title(参考訳): sea-net:糖尿病網膜症格付けのためのスクイーズ・アンド・エクスシジョン・アテンションネット
- Authors: Ziyuan Zhao, Kartik Chopra, Zeng Zeng, Xiaoli Li
- Abstract要約: 糖尿病は個人で最も一般的な病気の1つである。
糖尿病網膜症 (DR) は糖尿病の合併症であり、失明を引き起こす可能性がある。
網膜画像に基づくDRグレーディングは、治療計画のための診断と予後に優れた価値を提供する。
- 参考スコア(独自算出の注目度): 9.181677987146418
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Diabetes is one of the most common disease in individuals. \textit{Diabetic
retinopathy} (DR) is a complication of diabetes, which could lead to blindness.
Automatic DR grading based on retinal images provides a great diagnostic and
prognostic value for treatment planning. However, the subtle differences among
severity levels make it difficult to capture important features using
conventional methods. To alleviate the problems, a new deep learning
architecture for robust DR grading is proposed, referred to as SEA-Net, in
which, spatial attention and channel attention are alternatively carried out
and boosted with each other, improving the classification performance. In
addition, a hybrid loss function is proposed to further maximize the
inter-class distance and reduce the intra-class variability. Experimental
results have shown the effectiveness of the proposed architecture.
- Abstract(参考訳): 糖尿病は個人の最も一般的な病気の1つである。
\textit{Diabetic retinopathy} (DR) は糖尿病の合併症であり、失明を引き起こす可能性がある。
網膜画像に基づく自動DRグレーディングは、治療計画のための診断と予後に優れた価値を提供する。
しかし,重要度レベルの微妙な違いは,従来の手法では重要な特徴を捉えることが困難である。
この問題を軽減するため,シーネット(sea-net)と呼ばれるロバストなdrグレーティングのための新しいディープラーニングアーキテクチャを提案し,空間的注意とチャネル的注意を交互に実行し,相互に促進し,分類性能を向上させる。
さらに,クラス間距離をさらに最大化し,クラス内変動を低減するためにハイブリッド損失関数を提案する。
実験の結果,提案手法の有効性が示された。
関連論文リスト
- CLIP-DR: Textual Knowledge-Guided Diabetic Retinopathy Grading with Ranking-aware Prompting [48.47935559597376]
糖尿病網膜症(英: Diabetic retinopathy, DR)は、糖尿病の合併症の一つで、視力低下のレベルに達するのに何十年もかかる。
現在のDRグレーディング手法のほとんどは、データのばらつきに不十分な堅牢性に悩まされている。
3つの観測結果に基づく新しいDRグレーティングフレームワークCLIP-DRを提案する。
論文 参考訳(メタデータ) (2024-07-04T17:14:18Z) - Generalizing to Unseen Domains in Diabetic Retinopathy Classification [8.59772105902647]
糖尿病網膜症分類における分布や領域の特定にモデルを一般化する問題について検討した。
本稿では、視覚変換器の自己蒸留を実現するための、シンプルで効果的な領域一般化(DG)手法を提案する。
本稿では,オープンソースのDR分類データセット上での最先端DG手法の性能について報告する。
論文 参考訳(メタデータ) (2023-10-26T09:11:55Z) - Strategy for Rapid Diabetic Retinopathy Exposure Based on Enhanced
Feature Extraction Processing [0.0]
本研究の目的は, 糖尿病網膜症の診断を改善するために, 時間的DR識別のための深層学習モデルを開発することである。
提案モデルでは,早期に網膜画像から様々な病変を検出する。
論文 参考訳(メタデータ) (2023-05-08T14:17:33Z) - DRAC: Diabetic Retinopathy Analysis Challenge with Ultra-Wide Optical
Coherence Tomography Angiography Images [51.27125547308154]
第25回医用画像コンピューティング・コンピュータ支援介入国際会議(MICCAI 2022)にともなうDRAC糖尿病網膜症解析チャレンジの企画を行った。
この課題は、DR病変の分節化、画像品質評価、DRグレーディングの3つのタスクから構成される。
本稿では,課題の各課題について,トップパフォーマンスのソリューションと結果の要約と分析を行う。
論文 参考訳(メタデータ) (2023-04-05T12:04:55Z) - Deep AUC Maximization for Medical Image Classification: Challenges and
Opportunities [60.079782224958414]
我々は、AUCによる新たな深層学習手法による機会と課題を提示し、議論する(別名、アンダーラインbfディープアンダーラインbfAUC分類)。
論文 参考訳(メタデータ) (2021-11-01T15:31:32Z) - On the Robustness of Pretraining and Self-Supervision for a Deep
Learning-based Analysis of Diabetic Retinopathy [70.71457102672545]
糖尿病網膜症における訓練方法の違いによる影響を比較検討した。
本稿では,定量的性能,学習した特徴表現の統計,解釈可能性,画像歪みに対する頑健性など,さまざまな側面について検討する。
以上の結果から,ImageNet事前学習モデルでは,画像歪みに対する性能,一般化,堅牢性が著しく向上していることが示唆された。
論文 参考訳(メタデータ) (2021-06-25T08:32:45Z) - Diabetic Retinopathy Detection using Ensemble Machine Learning [1.2891210250935146]
糖尿病網膜症(Drebetic Retinopathy, DR)は、糖尿病患者の視覚障害の原因となる疾患である。
DRは、網膜に影響を及ぼす微小血管疾患であり、血管の閉塞を引き起こし、網膜組織の主要な栄養源を切断する。
論文 参考訳(メタデータ) (2021-06-22T17:36:08Z) - An Interpretable Multiple-Instance Approach for the Detection of
referable Diabetic Retinopathy from Fundus Images [72.94446225783697]
基礎画像における参照糖尿病網膜症検出のための機械学習システムを提案する。
画像パッチから局所情報を抽出し,アテンション機構により効率的に組み合わせることで,高い分類精度を実現することができる。
我々は,現在入手可能な網膜画像データセットに対するアプローチを評価し,最先端の性能を示す。
論文 参考訳(メタデータ) (2021-03-02T13:14:15Z) - Learning Discriminative Representations for Fine-Grained Diabetic
Retinopathy Grading [6.129288755571804]
糖尿病網膜症は視覚障害の主要な原因の1つである。
病気の重症度を判定するには、眼科医は眼底画像の識別部分に焦点を当てる必要がある。
論文 参考訳(メタデータ) (2020-11-04T04:16:55Z) - A Benchmark for Studying Diabetic Retinopathy: Segmentation, Grading,
and Transferability [76.64661091980531]
糖尿病患者は糖尿病網膜症(DR)を発症するリスクがある
コンピュータ支援型DR診断は、DRの早期検出と重度評価のための有望なツールである。
このデータセットは、ピクセルレベルのDR関連病変アノテーションを持つ1,842枚の画像と、6人の眼科医によって評価された画像レベルのラベルを持つ1,000枚の画像を有する。
論文 参考訳(メタデータ) (2020-08-22T07:48:04Z) - DcardNet: Diabetic Retinopathy Classification at Multiple Levels Based
on Structural and Angiographic Optical Coherence Tomography [1.9262162668141078]
糖尿病網膜症(DR)分類の枠組みを満たすために,畳み込みニューラルネットワーク(CNN)に基づく手法を提案する。
DR分類のために、適応レートドロップアウト(DcardNet)を備えた高密度かつ連続的に接続されたニューラルネットワークを設計する。
国際臨床糖尿病網膜症尺度に基づいて3つの分類レベルを作成した。
論文 参考訳(メタデータ) (2020-06-09T19:44:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。