論文の概要: TowerVision: Understanding and Improving Multilinguality in Vision-Language Models
- arxiv url: http://arxiv.org/abs/2510.21849v3
- Date: Thu, 06 Nov 2025 11:09:11 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-11-07 15:57:27.690205
- Title: TowerVision: Understanding and Improving Multilinguality in Vision-Language Models
- Title(参考訳): TowerVision:視覚言語モデルにおける多言語性の理解と改善
- Authors: André G. Viveiros, Patrick Fernandes, Saul Santos, Sonal Sannigrahi, Emmanouil Zaranis, Nuno M. Guerreiro, Amin Farajian, Pierre Colombo, Graham Neubig, André F. T. Martins,
- Abstract要約: TowerVisionは、画像テキストとビデオテキストの両方のためのオープンな多言語視覚言語モデルである。
微調整中に視覚的、文化的コンテキストを取り入れることで、私たちのモデルは既存のアプローチを超えます。
さらなる研究を支援するため、すべてのモデル、データ、トレーニングレシピを公開しています。
- 参考スコア(独自算出の注目度): 56.775118098058506
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Despite significant advances in vision-language models (VLMs), most existing work follows an English-centric design process, limiting their effectiveness in multilingual settings. In this work, we provide a comprehensive empirical study analyzing the impact of several multilingual design choices, such as training data composition, encoder selection, and text backbones. The result is TowerVision, a family of open multilingual VLMs for both image-text and video-text tasks, built upon the multilingual text-only model Tower+. TowerVision achieves competitive performance on multiple multimodal multilingual benchmarks and shows particular strength in culturally grounded tasks and multimodal translation. By incorporating visual and cultural context during fine-tuning, our models surpass existing approaches trained on substantially larger datasets, as demonstrated on ALM-Bench and Multi30K (image tasks) and ViMUL-Bench (video tasks). Alongside the models, we release VisionBlocks, a high-quality, curated vision-language dataset. Our findings highlight that multilingual vision-language training data substantially improves cross-lingual generalization -- both from high-resource to underrepresented languages and vice versa -- and that instruction-tuned LLMs are not always the optimal initialization point. To support further research, we publicly release all models, data, and training recipes.
- Abstract(参考訳): 視覚言語モデル(VLM)の大幅な進歩にもかかわらず、既存の作業の多くは英語中心の設計プロセスに従っており、多言語環境での有効性を制限している。
本研究では,学習データの構成,エンコーダの選択,テキストバックボーンなど,多言語設計選択の影響を総合的に分析する。
TowerVisionは、画像テキストとビデオテキストの両方のためのオープンな多言語VLMのファミリーで、多言語テキストのみのモデルであるT Tower+上に構築されている。
TowerVisionは、複数のマルチモーダルなマルチ言語ベンチマークで競合性能を達成し、文化的基盤のあるタスクやマルチモーダル翻訳において、特に強みを示している。
ALM-BenchとMulti30K(画像タスク)とViMUL-Bench(ビデオタスク)で実証されたように、微調整中に視覚的および文化的コンテキストを取り入れることで、我々のモデルは、かなり大きなデータセットで訓練された既存のアプローチを超越する。
モデルに加えて、高品質でキュレートされたビジョン言語データセットであるVisionBlocksをリリースしています。
本研究は,多言語視覚言語学習データにより,多言語間の一般化が大幅に向上することを明らかにする。
さらなる研究を支援するため、すべてのモデル、データ、トレーニングレシピを公開しています。
関連論文リスト
- LUSIFER: Language Universal Space Integration for Enhanced Multilingual Embeddings with Large Language Models [89.13128402847943]
LUSIFERは,LLMをベースとした多言語タスクの埋め込みモデルに,多言語監視を必要とせずに適用可能なゼロショット方式である。
LUSIFERのアーキテクチャは多言語エンコーダを組み、言語ユニバーサル学習者として機能し、埋め込み固有のタスクに最適化されたLLMベースの埋め込みモデルと組み合わせている。
5つの主要な埋め込みタスク、123の多様なデータセット、14言語にわたるカバレッジを含む新しいベンチマークを導入する。
論文 参考訳(メタデータ) (2025-01-01T15:43:07Z) - P-MMEval: A Parallel Multilingual Multitask Benchmark for Consistent Evaluation of LLMs [84.24644520272835]
本稿では,P-MMEvalを提案する。P-MMEval,P-MMEval,P-MMEval,P-MMEval,P-MMEval,P-MMEval,P-MMEval,P-MMEval,P-MMEval,P-MMEval,P-MMEval,P -M
P-MMEvalは、さまざまなデータセットにわたって一貫した言語カバレッジを提供し、並列サンプルを提供する。
我々は、モデルとタスク間の性能を比較するために、代表的多言語モデル系列に関する広範な実験を行う。
論文 参考訳(メタデータ) (2024-11-14T01:29:36Z) - A Progressive Framework of Vision-language Knowledge Distillation and Alignment for Multilingual Scene [11.265838907079196]
概念的にシンプルだが効果的なCLIP圧縮フレームワークを提案し、中国語と英語の両方の文脈で、DC-CLIPと呼ばれる軽量な多言語視覚言語モデルを訓練する。
本研究では,高品質な中国語と英語のテキストイメージを収集し,多言語視覚言語の特徴蒸留とアライメントを含む2つの訓練段階を設計する。
ELEVATERベンチマークに基づくゼロショット画像分類における総合的な実験により、DC-CLIPは英語の文脈において優れた性能を発揮することが示された。
論文 参考訳(メタデータ) (2024-04-17T10:56:06Z) - A Survey of Vision-Language Pre-training from the Lens of Multimodal
Machine Translation [13.426403221815063]
本稿では,マルチモーダル機械翻訳のレンズによる言語とビジョンの事前学習の状況について調査する。
我々は、共通アーキテクチャ、事前学習目的、文献からのデータセットを要約し、マルチモーダル機械翻訳の進展に何が必要かを推測する。
論文 参考訳(メタデータ) (2023-06-12T15:56:10Z) - RC3: Regularized Contrastive Cross-lingual Cross-modal Pre-training [84.23022072347821]
本稿では,弱整列型ビオテキスト入力の表現近接を制約する正規化言語間ビオテキストコントラスト学習目標を提案する。
6言語にまたがる5つの下流マルチモーダルタスクの実験により,提案手法の有効性が示された。
論文 参考訳(メタデータ) (2023-05-13T14:41:05Z) - Multilingual Multimodal Learning with Machine Translated Text [27.7207234512674]
英語のマルチモーダルデータの機械翻訳が、容易に利用できる多言語データの欠如を抑えるための効果的なプロキシとなるかどうかを考察する。
得られたデータセットからそのような翻訳を自動的に除去する2つの指標を提案する。
In experiment on five task across 20 languages in the IGLUE benchmark, we show that translated data can provide a useful signal for multilingual multimodal learning。
論文 参考訳(メタデータ) (2022-10-24T11:41:20Z) - Generalizing Multimodal Pre-training into Multilingual via Language
Acquisition [54.69707237195554]
英語のVision-Language Pre-Trainingは、様々な下流タスクで大きな成功を収めた。
この成功を英語以外の言語に一般化するために、Multilingual Vision-Language Pre-Trainingを通じていくつかの取り組みがなされている。
単言語視覚言語事前学習モデルを多言語に容易に一般化できるtextbfMultitextbfLingual textbfAcquisition (MLA) フレームワークを提案する。
論文 参考訳(メタデータ) (2022-05-29T08:53:22Z) - UC2: Universal Cross-lingual Cross-modal Vision-and-Language
Pre-training [52.852163987208826]
UC2は、言語間クロスモーダル表現学習のための最初の機械翻訳拡張フレームワークである。
Masked Region-token Modeling (MRTM) と Visual Translation Language Modeling (VTLM) の2つの新しいプリトレーニングタスクを提案する。
提案手法は,英語タスクにおける単言語学習モデルと同等の性能を維持しつつ,多種多様な非英語ベンチマークで新たな最先端を実現する。
論文 参考訳(メタデータ) (2021-04-01T08:30:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。