論文の概要: Operationalizing Large Language Models with Design-Aware Contexts for Code Comment Generation
- arxiv url: http://arxiv.org/abs/2510.22338v1
- Date: Sat, 25 Oct 2025 15:44:22 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-28 15:28:15.10455
- Title: Operationalizing Large Language Models with Design-Aware Contexts for Code Comment Generation
- Title(参考訳): コードコメント生成のための設計対応コンテキストによる大規模言語モデルの運用
- Authors: Aritra Mitra, Srijoni Majumdar, Anamitra Mukhopadhyay, Partha Pratim Das, Paul D Clough, Partha Pratim Chakrabarti,
- Abstract要約: 本研究は,LLMがより有用なコメントを生成するためのコンテキストとして,設計文書の実現性に焦点を当てる。
設計文書は、しばしばメンテナがコメントが十分でないときにコードを理解するために使われる。
- 参考スコア(独自算出の注目度): 6.19791892410626
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Comments are very useful to the flow of code development. With the increasing commonality of code, novice coders have been creating a significant amount of codebases. Due to lack of commenting standards, their comments are often useless, and increase the time taken to further maintain codes. This study intends to find the usefulness of large language models (LLMs) in these cases to generate potentially better comments. This study focuses on the feasibility of design documents as a context for the LLMs to generate more useful comments, as design documents are often used by maintainers to understand code when comments do not suffice.
- Abstract(参考訳): コメントは、コード開発の流れに非常に役立ちます。
コードの共通性の増加に伴い、初心者のコーダーは大量のコードベースを作成している。
コメント標準が欠如しているため、コメントは役に立たないことが多く、コードのメンテナンスに要する時間が増える。
本研究は,これらの事例における大規模言語モデル(LLM)の有用性を探り,より優れたコメントを生成することを目的とする。
この研究は、LLMがより有用なコメントを生成するためのコンテキストとして設計文書が実現可能であることに焦点を当てている。
関連論文リスト
- IFEvalCode: Controlled Code Generation [69.28317223249358]
本稿では,Code LLMの命令追従能力を改善するために,前方および後方制約生成を提案する。
IFEvalCodeは、7つのプログラミング言語の1.6Kテストサンプルからなる多言語ベンチマークである。
論文 参考訳(メタデータ) (2025-07-30T08:08:48Z) - Assessing Consensus of Developers' Views on Code Readability [3.798885293742468]
開発者はコードレビューに多くの時間を費やし、コード理解におけるコード可読性の重要性を強調している。
以前の調査では、既存のコード可読性モデルは開発者の考えを表現する上で不正確であった。
同じようなコーディング経験を持つ10人のJava開発者を調査して、コード可読性評価と関連する側面について、彼らのコンセンサスを評価しました。
論文 参考訳(メタデータ) (2024-07-04T09:54:42Z) - Comments as Natural Logic Pivots: Improve Code Generation via Comment Perspective [85.48043537327258]
本稿では, MANGO (comMents As Natural loGic pivOts) を提案する。
その結果、MANGOは強いベースラインに基づいてコードパス率を大幅に改善することがわかった。
論理的なコメントの復号化戦略の堅牢性は、考えの連鎖よりも顕著に高い。
論文 参考訳(メタデータ) (2024-04-11T08:30:46Z) - Can ChatGPT Support Developers? An Empirical Evaluation of Large Language Models for Code Generation [2.93322471069531]
開発者によるChatGPTとの会話から収集したデータセットであるDevGPTにおける会話の実証分析を行った。
この結果から,LLM生成コードを使用する現在の実践は,高レベルな概念を示すか,ドキュメントに例を示すかのどちらかに制限されていることが示唆された。
論文 参考訳(メタデータ) (2024-02-18T20:48:09Z) - Large Language Models are Few-Shot Summarizers: Multi-Intent Comment
Generation via In-Context Learning [34.006227676170504]
本研究では,大規模言語モデル(LLM)を用いて,開発者の多様な意図を満たすコメントを生成することの実現可能性について検討する。
2つの大規模なデータセットの実験は、私たちの洞察の理論的根拠を示しています。
論文 参考訳(メタデータ) (2023-04-22T12:26:24Z) - ReACC: A Retrieval-Augmented Code Completion Framework [53.49707123661763]
本稿では,語彙のコピーと類似したセマンティクスを持つコード参照の両方を検索により活用する検索拡張コード補完フレームワークを提案する。
我々は,Python および Java プログラミング言語のコード補完タスクにおけるアプローチを評価し,CodeXGLUE ベンチマークで最先端のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2022-03-15T08:25:08Z) - CodeRetriever: Unimodal and Bimodal Contrastive Learning [128.06072658302165]
関数レベルのコードセマンティック表現を訓練するために,一様および二様のコントラスト学習を組み合わせたCodeRetrieverモデルを提案する。
ノンモーダルなコントラスト学習のために、文書と関数名に基づいてポジティブなコードペアを構築するためのセマンティックガイド付き手法を設計する。
バイモーダルなコントラスト学習では、コードのドキュメンテーションとインラインコメントを活用して、テキストコードペアを構築します。
論文 参考訳(メタデータ) (2022-01-26T10:54:30Z) - Deep Just-In-Time Inconsistency Detection Between Comments and Source
Code [51.00904399653609]
本稿では,コード本体の変更によりコメントが矛盾するかどうかを検出することを目的とする。
私たちは、コメントとコードの変更を関連付けるディープラーニングアプローチを開発しています。
より包括的な自動コメント更新システムを構築するために,コメント更新モデルと組み合わせて提案手法の有用性を示す。
論文 参考訳(メタデータ) (2020-10-04T16:49:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。