論文の概要: GRAD: Real-Time Gated Recurrent Anomaly Detection in Autonomous Vehicle Sensors Using Reinforced EMA and Multi-Stage Sliding Window Techniques
- arxiv url: http://arxiv.org/abs/2510.23327v1
- Date: Mon, 27 Oct 2025 13:44:15 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-28 19:54:32.610793
- Title: GRAD: Real-Time Gated Recurrent Anomaly Detection in Autonomous Vehicle Sensors Using Reinforced EMA and Multi-Stage Sliding Window Techniques
- Title(参考訳): GRAD: 強化EMAと多段スライディングウィンドウを用いた自動車両センサにおけるリアルタイムGated Recurrent Anomaly Detection
- Authors: Mohammad Hossein Jafari Naeimi, Ali Norouzi, Athena Abdi,
- Abstract要約: 本稿では,自動運転車センサのリアルタイム異常検出手法であるGRADを紹介する。
提案手法は,スムーズな要因に適応するReinforced Exponential moving Average (REMA) と,短期パターンと長期パターンの両方をキャプチャするMulti-Stage Sliding Window (MS-SW) 技術を組み合わせたものである。
GRADはGRUの2つの層からなる軽量なアーキテクチャで、ニューロンの数が限られており、リアルタイムアプリケーションに適している。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: This paper introduces GRAD, a real-time anomaly detection method for autonomous vehicle sensors that integrates statistical analysis and deep learning to ensure the reliability of sensor data. The proposed approach combines the Reinforced Exponential Moving Average (REMA), which adapts smoothing factors and thresholding for outlier detection, with the Multi-Stage Sliding Window (MS-SW) technique for capturing both short- and long-term patterns. These features are processed using a lightweight Gated Recurrent Unit (GRU) model, which detects and classifies anomalies based on bias types, while a recovery module restores damaged sensor data to ensure continuous system operation. GRAD has a lightweight architecture consisting of two layers of GRU with a limited number of neurons that make it appropriate for real-time applications while maintaining high detection accuracy. The GRAD framework achieved remarkable performance in anomaly detection and classification. The model demonstrated an overall F1-score of 97.6% for abnormal data and 99.4% for normal data, signifying its high accuracy in distinguishing between normal and anomalous sensor data. Regarding the anomaly classification, GRAD successfully categorized different anomaly types with high precision, enabling the recovery module to accurately restore damaged sensor data. Relative to analogous studies, GRAD surpasses current models by attaining a balance between elevated detection accuracy and diminished computational expense. These results demonstrate GRAD's potential as a reliable and efficient solution for real-time anomaly detection in autonomous vehicle systems, guaranteeing safe vehicle operation with minimal computational overhead.
- Abstract(参考訳): 本稿では,センサデータの信頼性を確保するために,統計的解析とディープラーニングを統合した自律走行センサのリアルタイム異常検出手法であるGRADを紹介する。
提案手法は,スムーズな要因に適応するReinforced Exponential moving Average (REMA) と,短期パターンと長期パターンの両方をキャプチャするMulti-Stage Sliding Window (MS-SW) 技術を組み合わせたものである。
これらの機能は、バイアスタイプに基づいて異常を検出し分類する軽量GRUモデルを用いて処理され、リカバリモジュールは損傷したセンサデータを復元し、連続的なシステム動作を保証する。
GRADは、GRUの2つの層からなる軽量なアーキテクチャで、限られた数のニューロンで構成されており、高い検出精度を維持しながらリアルタイムアプリケーションに適している。
GRADフレームワークは異常検出と分類において顕著な性能を達成した。
このモデルは、異常なデータに対して97.6%、正常なデータに対して99.4%の総合F1スコアを示し、正常なセンサーと異常なセンサーデータの区別において高い精度を示している。
異常分類に関して、GRADは様々な異常タイプを高精度に分類し、回復モジュールが損傷したセンサーデータを正確に復元することを可能にする。
類似研究とは対照的に、GRADは検出精度の上昇と計算コストの減少のバランスをとることで、現在のモデルを上回っている。
これらの結果は、自律走行車システムにおけるリアルタイム異常検出のための信頼性と効率的なソリューションとしてのGRADの可能性を示し、計算オーバーヘッドを最小限に抑えた安全な車両運転を保証する。
関連論文リスト
- Diffuse to Detect: A Generalizable Framework for Anomaly Detection with Diffusion Models Applications to UAVs and Beyond [2.4449457537548036]
UAVセンサーの読み取りなどの複雑な高次元データにおける異常検出は、運用上の安全性に不可欠である。
本稿では,拡散モデルを適用して異常検出を行うDiffuse to Detect(DTD)フレームワークを提案する。
DTDは1ステップの拡散プロセスを用いてノイズパターンを予測し、再構成エラーのない異常の迅速かつ正確な同定を可能にする。
論文 参考訳(メタデータ) (2025-10-27T02:08:08Z) - Fault detection and diagnosis for the engine electrical system of a space launcher based on a temporal convolutional autoencoder and calibrated classifiers [0.0]
本稿では,次世代再利用可能な宇宙ランチャーの故障検出・診断機能開発に向けた第一歩を概説する。
文献における既存のアプローチとは異なり、我々のソリューションはより広い範囲の重要な要件を満たすように設計されています。
提案手法は、時間畳み込みオートエンコーダに基づいて、原センサデータから低次元特徴を自動的に抽出する。
論文 参考訳(メタデータ) (2025-07-17T11:50:29Z) - SlowFastVAD: Video Anomaly Detection via Integrating Simple Detector and RAG-Enhanced Vision-Language Model [52.47816604709358]
ビデオ異常検出(VAD)は、ビデオ内の予期せぬ事象を識別することを目的としており、安全クリティカルドメインに広く応用されている。
視覚言語モデル(VLM)は強力なマルチモーダル推論能力を示し、異常検出の新しい機会を提供している。
SlowFastVADは高速異常検出器と低速異常検出器を統合したハイブリッドフレームワークである。
論文 参考訳(メタデータ) (2025-04-14T15:30:03Z) - Spatial-Temporal Bearing Fault Detection Using Graph Attention Networks and LSTM [0.7864304771129751]
本稿では,グラフ注意ネットワーク(GAT)とLong Short-Term Memory(LSTM)ネットワークを組み合わせた新しい手法を提案する。
このアプローチは、センサデータ内の空間的および時間的依存関係を捕捉し、軸受故障検出の精度を向上させる。
論文 参考訳(メタデータ) (2024-10-15T12:55:57Z) - An Improved Anomaly Detection Model for Automated Inspection of Power Line Insulators [0.0]
電力系統の信頼性を確保するためには絶縁体の検査が重要である。
検査プロセスを自動化するために、ディープラーニングがますます活用されています。
本稿では,異常検出とオブジェクト検出の2段階的アプローチを提案する。
論文 参考訳(メタデータ) (2023-11-14T11:36:20Z) - PULL: Reactive Log Anomaly Detection Based On Iterative PU Learning [58.85063149619348]
本稿では,推定故障時間ウィンドウに基づくリアクティブ異常検出のための反復ログ解析手法PULLを提案する。
我々の評価では、PULLは3つの異なるデータセットで10のベンチマークベースラインを一貫して上回っている。
論文 参考訳(メタデータ) (2023-01-25T16:34:43Z) - An Outlier Exposure Approach to Improve Visual Anomaly Detection
Performance for Mobile Robots [76.36017224414523]
移動ロボットの視覚異常検出システム構築の問題点を考察する。
標準異常検出モデルは、非異常データのみからなる大規模なデータセットを用いて訓練される。
本研究では,これらのデータを利用してリアルNVP異常検出モデルの性能向上を図る。
論文 参考訳(メタデータ) (2022-09-20T15:18:13Z) - Detecting Driver Drowsiness as an Anomaly Using LSTM Autoencoders [0.0]
LSTMオートエンコーダをベースとしたアーキテクチャは,ResNet-34を特徴抽出器として使用する。
提案モデルでは,曲線下0.8740領域の検出率を実現し,特定のシナリオにおいて大幅な改善が可能である。
論文 参考訳(メタデータ) (2022-09-12T14:25:07Z) - DAE : Discriminatory Auto-Encoder for multivariate time-series anomaly
detection in air transportation [68.8204255655161]
識別オートエンコーダ(DAE)と呼ばれる新しい異常検出モデルを提案する。
通常のLSTMベースのオートエンコーダのベースラインを使用するが、いくつかのデコーダがあり、それぞれ特定の飛行フェーズのデータを取得する。
その結果,DAEは精度と検出速度の両方で良好な結果が得られることがわかった。
論文 参考訳(メタデータ) (2021-09-08T14:07:55Z) - Unsupervised Anomaly Detection with Adversarial Mirrored AutoEncoders [51.691585766702744]
本稿では,識別器のミラー化ワッサースタイン損失を利用して,よりセマンティックレベルの再構築を行う逆自動エンコーダの変種を提案する。
我々は,再建基準の代替として,異常スコアの代替尺度を提案した。
提案手法は,OOD検出ベンチマークにおける異常検出の最先端手法よりも優れている。
論文 参考訳(メタデータ) (2020-03-24T08:26:58Z) - SUOD: Accelerating Large-Scale Unsupervised Heterogeneous Outlier
Detection [63.253850875265115]
外乱検出(OD)は、一般的なサンプルから異常物体を識別するための機械学習(ML)タスクである。
そこで我々は,SUODと呼ばれるモジュール型加速度システムを提案する。
論文 参考訳(メタデータ) (2020-03-11T00:22:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。