論文の概要: An Improved Anomaly Detection Model for Automated Inspection of Power Line Insulators
- arxiv url: http://arxiv.org/abs/2312.11470v2
- Date: Tue, 27 Aug 2024 13:55:17 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-28 19:58:52.916306
- Title: An Improved Anomaly Detection Model for Automated Inspection of Power Line Insulators
- Title(参考訳): 電力線絶縁体自動検査における異常検出モデルの改良
- Authors: Laya Das, Blazhe Gjorgiev, Giovanni Sansavini,
- Abstract要約: 電力系統の信頼性を確保するためには絶縁体の検査が重要である。
検査プロセスを自動化するために、ディープラーニングがますます活用されています。
本稿では,異常検出とオブジェクト検出の2段階的アプローチを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Inspection of insulators is important to ensure reliable operation of the power system. Deep learning is being increasingly exploited to automate the inspection process by leveraging object detection models to analyse aerial images captured by drones. A purely object detection-based approach, however, suffers from class imbalance-induced poor performance, which can be accentuated for infrequent and hard-to-detect incipient faults. This article proposes the use of anomaly detection along with object detection in a two-stage approach for incipient fault detection in a data-efficient manner. An explainable convolutional one-class classifier is adopted for anomaly detection. The one-class formulation reduces the reliance on plentifully available images of faulty insulators, while the explainability of the model is expected to promote adoption by the industry. A modified loss function is developed that addresses computational and interpretability issues with the existing model, also allowing for the integration of other losses. The superiority of the novel loss function is demonstrated with MVTec-AD dataset. The models are trained for insulator inspection with two datasets -- representing data-abundant and data-scarce scenarios -- in unsupervised and semi-supervised settings. The results suggest that including as few as five real anomalies in the training dataset significantly improves the model's performance and enables reliable detection of rarely occurring incipient faults in insulators.
- Abstract(参考訳): 電力系統の信頼性を確保するためには絶縁体の検査が重要である。
深層学習は、物体検出モデルを利用してドローンが捉えた空中画像を分析することで、検査プロセスを自動化するためにますます活用されている。
しかし、純粋にオブジェクト検出に基づくアプローチは、クラス不均衡によって引き起こされるパフォーマンスの低下に悩まされ、頻繁で検出が難しい初期障害に対してアクセントを付けることができる。
本稿では, 異常検出とオブジェクト検出の2段階的アプローチによるデータ効率のよい異常検出手法を提案する。
異常検出には説明可能な畳み込み一級分類器が用いられる。
1級の定式化により,故障した絶縁体画像への依存度が低くなり,その説明可能性も業界による採用を促進することが期待されている。
既存のモデルによる計算や解釈可能性の問題に対処し、他の損失を統合できる改良された損失関数が開発されている。
MVTec-ADデータセットを用いて、新規損失関数の優位性を実証した。
モデルは、教師なしおよび半教師なしの設定で、2つのデータセット -- データバウンダントとデータスカースシナリオを表す -- でインシュレータインスペクションのためにトレーニングされている。
その結果、トレーニングデータセットの5つの実際の異常を含むと、モデルの性能が大幅に向上し、絶縁体で稀に発生する異常を確実に検出できることが示唆された。
関連論文リスト
- XAI-guided Insulator Anomaly Detection for Imbalanced Datasets [11.215245485606369]
電力網は多くの産業において重要な要素であり、産業プロセスや技術にシームレスに電気エネルギーを供給している。
ドローンは電力線を検査するためにますます配備され、その結果、高速で正確な処理を必要とする大量の視覚データの流れが生まれる。
ディープラーニング手法はこのタスクで広く普及し、障害検出において貴重な資産であることが証明されている。
論文 参考訳(メタデータ) (2024-09-25T11:19:42Z) - Generating and Reweighting Dense Contrastive Patterns for Unsupervised
Anomaly Detection [59.34318192698142]
我々は、先行のない異常発生パラダイムを導入し、GRADと呼ばれる革新的な教師なし異常検出フレームワークを開発した。
PatchDiffは、様々な種類の異常パターンを効果的に公開する。
MVTec ADとMVTec LOCOデータセットの両方の実験も、前述の観測をサポートする。
論文 参考訳(メタデータ) (2023-12-26T07:08:06Z) - Object detection-based inspection of power line insulators: Incipient
fault detection in the low data-regime [0.0]
本研究は,円盤内の初期欠陥に着目し,空画像からの絶縁体および資産検査のための3つの物体検出タスクを定式化する。
我々は、健康かつ欠陥のある絶縁体を検出するための堅牢な特徴を学習するために使用できる、絶縁体画像の大規模な参照データセットをキュレートする。
その結果, 物体検出モデルを用いて, 絶縁体中の欠陥を早期に検出できることが示唆された。
論文 参考訳(メタデータ) (2022-12-21T13:49:19Z) - A Robust and Explainable Data-Driven Anomaly Detection Approach For
Power Electronics [56.86150790999639]
本稿では,2つの異常検出・分類手法,すなわち行列プロファイルアルゴリズムと異常変換器を提案する。
行列プロファイルアルゴリズムは、ストリーミング時系列データにおけるリアルタイム異常を検出するための一般化可能なアプローチとして適している。
検知器の感度、リコール、検出精度を調整するために、一連のカスタムフィルタが作成され、追加される。
論文 参考訳(メタデータ) (2022-09-23T06:09:35Z) - An Outlier Exposure Approach to Improve Visual Anomaly Detection
Performance for Mobile Robots [76.36017224414523]
移動ロボットの視覚異常検出システム構築の問題点を考察する。
標準異常検出モデルは、非異常データのみからなる大規模なデータセットを用いて訓練される。
本研究では,これらのデータを利用してリアルNVP異常検出モデルの性能向上を図る。
論文 参考訳(メタデータ) (2022-09-20T15:18:13Z) - Functional Anomaly Detection: a Benchmark Study [4.444788548423704]
異常検出は、非常に高い周波数でサンプリングされた測定に依存することができる。
本研究の目的は, 実データセット上の機能的設定において, 異常検出のための最近の手法の性能について検討することである。
論文 参考訳(メタデータ) (2022-01-13T18:20:32Z) - Attentive Prototypes for Source-free Unsupervised Domain Adaptive 3D
Object Detection [85.11649974840758]
3Dオブジェクト検出ネットワークは、トレーニングされたデータに対してバイアスを受ける傾向がある。
そこで本研究では,ライダーを用いた3次元物体検出器のソースレス・教師なし領域適応のための単一フレーム手法を提案する。
論文 参考訳(メタデータ) (2021-11-30T18:42:42Z) - DAE : Discriminatory Auto-Encoder for multivariate time-series anomaly
detection in air transportation [68.8204255655161]
識別オートエンコーダ(DAE)と呼ばれる新しい異常検出モデルを提案する。
通常のLSTMベースのオートエンコーダのベースラインを使用するが、いくつかのデコーダがあり、それぞれ特定の飛行フェーズのデータを取得する。
その結果,DAEは精度と検出速度の両方で良好な結果が得られることがわかった。
論文 参考訳(メタデータ) (2021-09-08T14:07:55Z) - Out-Of-Bag Anomaly Detection [0.9449650062296822]
データ異常は、実世界のデータセットでユビキタスであり、機械学習(ML)システムに悪影響を及ぼす可能性がある。
本稿では,新しいモデルに基づく異常検出手法を提案し,その手法をアウト・オブ・バグ検出と呼ぶ。
本手法は,家庭評価のケーススタディを通じて,データ前処理のステップとして,MLシステムの精度と信頼性を向上させることができることを示す。
論文 参考訳(メタデータ) (2020-09-20T06:01:52Z) - Unsupervised Anomaly Detection with Adversarial Mirrored AutoEncoders [51.691585766702744]
本稿では,識別器のミラー化ワッサースタイン損失を利用して,よりセマンティックレベルの再構築を行う逆自動エンコーダの変種を提案する。
我々は,再建基準の代替として,異常スコアの代替尺度を提案した。
提案手法は,OOD検出ベンチマークにおける異常検出の最先端手法よりも優れている。
論文 参考訳(メタデータ) (2020-03-24T08:26:58Z) - Detection Method Based on Automatic Visual Shape Clustering for
Pin-Missing Defect in Transmission Lines [1.602803566465659]
ボルトは送電線で最も多くのファスナーであり、分割ピンを失う傾向にある。
タイムリーかつ効率的なトラブルシューティングを実現するために,伝送線路のボルトの自動ピン欠落検出を実現する方法は難しい問題である。
本稿では、ピン欠落検出のためのAVSCNet(Automatic Visual Shape Clustering Network)と呼ばれる自動検出モデルを構築した。
論文 参考訳(メタデータ) (2020-01-17T10:57:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。