論文の概要: Interpretable Tile-Based Classification of Paclitaxel Exposure
- arxiv url: http://arxiv.org/abs/2510.23363v1
- Date: Mon, 27 Oct 2025 14:13:51 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-28 15:28:15.569013
- Title: Interpretable Tile-Based Classification of Paclitaxel Exposure
- Title(参考訳): Paclitaxel Exposureの解釈可能なタイルベース分類法
- Authors: Sean Fletcher, Gabby Scott, Douglas Currie, Xin Zhang, Yuqi Song, Bruce MacLeod,
- Abstract要約: C6グリオーマ細胞の相コントラスト顕微鏡によるパクリタキセル曝露の分類について検討した。
本稿では,局所パッチ上で動作し,タイル出力を画像ラベルに結合する,単純なタイリング・アンド・アグリゲーションパイプラインを提案する。
- 参考スコア(独自算出の注目度): 2.857948740800973
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Medical image analysis is central to drug discovery and preclinical evaluation, where scalable, objective readouts can accelerate decision-making. We address classification of paclitaxel (Taxol) exposure from phase-contrast microscopy of C6 glioma cells -- a task with subtle dose differences that challenges full-image models. We propose a simple tiling-and-aggregation pipeline that operates on local patches and combines tile outputs into an image label, achieving state-of-the-art accuracy on the benchmark dataset and improving over the published baseline by around 20 percentage points, with trends confirmed by cross-validation. To understand why tiling is effective, we further apply Grad-CAM and Score-CAM and attention analyses, which enhance model interpretability and point toward robustness-oriented directions for future medical image research. Code is released to facilitate reproduction and extension.
- Abstract(参考訳): 医用画像解析は薬物発見と予防的評価の中心であり、スケーラブルで客観的な読み出しが意思決定を加速させる。
我々は、C6グリオーマ細胞の位相コントラスト顕微鏡からのパクリタキセル(タキソール)曝露の分類に取り組む。
局所パッチで動作し,タイル出力をイメージラベルに組み合わせ,ベンチマークデータセット上で最先端の精度を実現し,公開ベースラインを約20パーセント向上する,簡易なタイリング・アンド・アグリゲーションパイプラインを提案する。
タイリングが有効である理由を理解するため,Grad-CAMとScore-CAMを更に応用し,モデル解釈可能性を高め,将来的な医用画像研究におけるロバストネス指向の方向性を示す。
再生と拡張を容易にするために、コードはリリースされている。
関連論文リスト
- Visual Prompt Engineering for Vision Language Models in Radiology [0.17183214167143138]
Contrastive Language-Image Pretraining (CLIP)は,マルチモーダルな大規模事前訓練によるゼロショット分類を可能にすることで,有望なソリューションを提供する。
CLIPは、グローバルな画像コンテンツを効果的にキャプチャするが、ラジオロジーは、解釈可能性と診断精度の両方を高めるために、特定の病理領域により局所的な焦点をあてる必要がある。
視覚的手がかりをゼロショット分類に組み込む可能性を探り、矢印、バウンディングボックス、円などの視覚的マーカーを直接放射線画像に埋め込んでモデル注意を誘導する。
論文 参考訳(メタデータ) (2024-08-28T13:53:27Z) - Rethinking Semi-Supervised Medical Image Segmentation: A
Variance-Reduction Perspective [51.70661197256033]
医用画像セグメンテーションのための階層化グループ理論を用いた半教師付きコントラスト学習フレームワークARCOを提案する。
まず、分散還元推定の概念を用いてARCOを構築することを提案し、特定の分散還元技術が画素/ボクセルレベルのセグメンテーションタスクにおいて特に有用であることを示す。
5つの2D/3D医療データセットと3つのセマンティックセグメンテーションデータセットのラベル設定が異なる8つのベンチマークで、我々のアプローチを実験的に検証する。
論文 参考訳(メタデータ) (2023-02-03T13:50:25Z) - Stain-invariant self supervised learning for histopathology image
analysis [74.98663573628743]
乳がんのヘマトキシリンおよびエオシン染色像におけるいくつかの分類課題に対する自己監督アルゴリズムを提案する。
本手法は,いくつかの乳がんデータセット上での最先端のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2022-11-14T18:16:36Z) - Improving Classification Model Performance on Chest X-Rays through Lung
Segmentation [63.45024974079371]
本稿では, セグメンテーションによる異常胸部X線(CXR)識別性能を向上させるための深層学習手法を提案する。
提案手法は,CXR画像中の肺領域を局所化するための深層ニューラルネットワーク(XLSor)と,大規模CXRデータセットで事前学習した自己教師あり運動量コントラスト(MoCo)モデルのバックボーンを用いたCXR分類モデルである。
論文 参考訳(メタデータ) (2022-02-22T15:24:06Z) - Nuclei Segmentation with Point Annotations from Pathology Images via
Self-Supervised Learning and Co-Training [44.13451004973818]
核分割のための弱い教師付き学習法を提案する。
粗いピクセルレベルのラベルは、ボロノイ図に基づく点アノテーションから導かれる。
病理画像の核分割に適した自己教師付き視覚表現学習法を提案する。
論文 参考訳(メタデータ) (2022-02-16T17:08:44Z) - ScoreNet: Learning Non-Uniform Attention and Augmentation for
Transformer-Based Histopathological Image Classification [11.680355561258427]
高解像度画像はデジタル病理の進歩を妨げる。
パッチベースの処理は、しばしば複数のインスタンス学習(MIL)を組み込んで、画像レベルの予測をもたらす局所的なパッチレベルの表現を集約する。
本稿では,組織像分類に適したトランスフォーマーアーキテクチャを提案する。
局所的なきめ細かな注意と粗いグローバルな注意機構を組み合わせることで、高解像度画像の意味的な表現を効率的な計算コストで学習する。
論文 参考訳(メタデータ) (2022-02-15T16:55:09Z) - Incremental Cross-view Mutual Distillation for Self-supervised Medical
CT Synthesis [88.39466012709205]
本稿では,スライス間の分解能を高めるために,新しい医療スライスを構築した。
臨床実践において, 根本・中間医療スライスは常に欠落していることを考慮し, 相互蒸留の段階的相互蒸留戦略を導入する。
提案手法は,最先端のアルゴリズムよりも明確なマージンで優れる。
論文 参考訳(メタデータ) (2021-12-20T03:38:37Z) - Towards Unbiased COVID-19 Lesion Localisation and Segmentation via
Weakly Supervised Learning [66.36706284671291]
本研究では,画像レベルラベルのみに監視されたデータ駆動型フレームワークを提案する。
このフレームワークは、生成する対向ネットワークと病変特異的デコーダの助けを借りて、原画像から潜在的な病変を明示的に分離することができる。
論文 参考訳(メタデータ) (2021-03-01T06:05:49Z) - Cancer image classification based on DenseNet model [3.3516258832067067]
DenseNet Blockに基づく新しい転移性癌画像分類モデルを提案する。
PatchCamelyon(PCam)ベンチマークデータセットのわずかに修正されたバージョンに対する提案手法の評価を行った。
論文 参考訳(メタデータ) (2020-11-23T03:05:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。