論文の概要: Language Models for Longitudinal Clinical Prediction
- arxiv url: http://arxiv.org/abs/2510.23884v1
- Date: Mon, 27 Oct 2025 21:49:03 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-29 15:35:36.594616
- Title: Language Models for Longitudinal Clinical Prediction
- Title(参考訳): 縦断的臨床予測のための言語モデル
- Authors: Tananun Songdechakraiwut, Michael Lutz,
- Abstract要約: 凍結した大言語モデルを用いて縦断的臨床データを解析する軽量フレームワークについて検討する。
このアプローチは、言語モデル空間内の患者履歴とコンテキストを統合し、モデル微調整なしで正確な予測を生成する。
最小限のトレーニングデータでも正確で信頼性の高いパフォーマンスを実現し、早期のアルツハイマーの監視を約束する。
- 参考スコア(独自算出の注目度): 2.5925656171325127
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We explore a lightweight framework that adapts frozen large language models to analyze longitudinal clinical data. The approach integrates patient history and context within the language model space to generate accurate forecasts without model fine-tuning. Applied to neuropsychological assessments, it achieves accurate and reliable performance even with minimal training data, showing promise for early-stage Alzheimer's monitoring.
- Abstract(参考訳): 凍結した大言語モデルを用いて縦断的臨床データを解析する軽量フレームワークについて検討する。
このアプローチは、言語モデル空間内の患者履歴とコンテキストを統合し、モデル微調整なしで正確な予測を生成する。
神経心理学的評価に適用すると、最小限のトレーニングデータでも正確で信頼性の高いパフォーマンスを達成し、早期のアルツハイマーのモニタリングを約束する。
関連論文リスト
- Temporal Entailment Pretraining for Clinical Language Models over EHR Data [9.584923572354045]
臨床領域における言語モデルのための新しい時間的包含事前学習目標を提案する。
本手法は, EHRセグメントを時間的に順序付けられた文対として定式化し, 後の状態が先行状態に関係しているか, 矛盾しているか, 中立であるかを決定するようモデルを訓練する。
論文 参考訳(メタデータ) (2025-04-25T07:30:38Z) - Self-Explaining Hypergraph Neural Networks for Diagnosis Prediction [45.89562183034469]
既存のディープラーニング診断予測モデルと本質的な解釈性は、過去の診断や病院訪問の度に注意重みを割り当てることが多い。
我々は、パーソナライズされた簡潔で忠実な説明を提供するように設計された、自己説明型ハイパーグラフニューラルネットワークモデルSHyを紹介する。
SHyは高次疾患の相互作用を捉え、パーソナライズされた説明として異なる時間的表現型を抽出する。
論文 参考訳(メタデータ) (2025-02-15T06:33:02Z) - Clinical information extraction for Low-resource languages with Few-shot learning using Pre-trained language models and Prompting [12.166472806042592]
臨床資料から医療情報を自動抽出することはいくつかの課題をもたらす。
ドメイン適応とプロンプト手法の最近の進歩は、最小限のトレーニングデータで有望な結果を示した。
軽量でドメイン適応型事前訓練モデルが20ショットでトリガーされ、従来の分類モデルを30.5%精度で上回っていることを実証する。
論文 参考訳(メタデータ) (2024-03-20T08:01:33Z) - Recent Advances in Predictive Modeling with Electronic Health Records [71.19967863320647]
EHRデータを予測モデリングに利用すると、その特徴からいくつかの課題が生じる。
深層学習は、医療を含む様々な応用においてその優位性を示している。
論文 参考訳(メタデータ) (2024-02-02T00:31:01Z) - CPLLM: Clinical Prediction with Large Language Models [0.07083082555458872]
本稿では,臨床疾患に対するLLM(Pre-trained Large Language Model)の微調整と寛容予測を行う手法を提案する。
診断予測には,患者の来訪時に対象疾患と診断されるか,その後に診断されるかを,過去の診断記録を利用して予測する。
提案手法であるCPLLMは,PR-AUCおよびROC-AUCの指標で試験された全てのモデルを上回ることを示した。
論文 参考訳(メタデータ) (2023-09-20T13:24:12Z) - Textual Data Augmentation for Patient Outcomes Prediction [67.72545656557858]
本稿では,患者の電子カルテに人工的な臨床ノートを作成するための新しいデータ拡張手法を提案する。
生成言語モデルGPT-2を微調整し、ラベル付きテキストを元のトレーニングデータで合成する。
今回,最も多い患者,すなわち30日間の寛解率について検討した。
論文 参考訳(メタデータ) (2022-11-13T01:07:23Z) - Data Augmentation for Spoken Language Understanding via Pretrained
Language Models [113.56329266325902]
音声言語理解(SLU)モデルの訓練は、しばしばデータ不足の問題に直面している。
我々は,事前学習言語モデルを用いたデータ拡張手法を提案し,生成した発話の変動性と精度を向上した。
論文 参考訳(メタデータ) (2020-04-29T04:07:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。