論文の概要: PlanarGS: High-Fidelity Indoor 3D Gaussian Splatting Guided by Vision-Language Planar Priors
- arxiv url: http://arxiv.org/abs/2510.23930v1
- Date: Mon, 27 Oct 2025 23:32:19 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-29 15:35:36.618081
- Title: PlanarGS: High-Fidelity Indoor 3D Gaussian Splatting Guided by Vision-Language Planar Priors
- Title(参考訳): PlanarGS:高忠実な室内3Dガウシアン・スプレイティングをビジョンランゲージ・プラナー・プレジデントがガイド
- Authors: Xirui Jin, Renbiao Jin, Boying Li, Danping Zou, Wenxian Yu,
- Abstract要約: PlanarGSは屋内シーンの再構築に適した3DGSベースのフレームワークである。
PlanarGSは正確で詳細な3D表面を再構築し、常に最先端の手法を大きなマージンで上回っている。
- 参考スコア(独自算出の注目度): 13.825701925456768
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Three-dimensional Gaussian Splatting (3DGS) has recently emerged as an efficient representation for novel-view synthesis, achieving impressive visual quality. However, in scenes dominated by large and low-texture regions, common in indoor environments, the photometric loss used to optimize 3DGS yields ambiguous geometry and fails to recover high-fidelity 3D surfaces. To overcome this limitation, we introduce PlanarGS, a 3DGS-based framework tailored for indoor scene reconstruction. Specifically, we design a pipeline for Language-Prompted Planar Priors (LP3) that employs a pretrained vision-language segmentation model and refines its region proposals via cross-view fusion and inspection with geometric priors. 3D Gaussians in our framework are optimized with two additional terms: a planar prior supervision term that enforces planar consistency, and a geometric prior supervision term that steers the Gaussians toward the depth and normal cues. We have conducted extensive experiments on standard indoor benchmarks. The results show that PlanarGS reconstructs accurate and detailed 3D surfaces, consistently outperforming state-of-the-art methods by a large margin. Project page: https://planargs.github.io
- Abstract(参考訳): 3次元ガウススメッティング(3DGS)は近年,目覚しい視覚的品質を達成し,斬新な視点合成の効率的な表現として出現している。
しかし、3DGSを最適化するために使用される測光損失は、大域および低テクスチュア領域に支配されるシーンではあいまいな形状となり、高忠実な3D表面の復元に失敗する。
この制限を克服するために,屋内シーン再構築に適した3DGSベースのフレームワークであるPlanarGSを紹介した。
具体的には、事前学習された視覚言語セグメンテーションモデルを用いて、クロスビュー融合と幾何学的事前検査により領域提案を洗練するLanguage-Prompted Planar Priors (LP3) のパイプラインを設計する。
我々のフレームワークの3Dガウス派は、平面的一貫性を強制する平面的事前監督項と、ガウス派を奥行きと通常の手がかりへと導く幾何学的事前監督項の2つの追加用語で最適化されている。
室内標準ベンチマークについて広範な実験を行った。
その結果,PlanarGSは高精度で詳細な3次元表面を再構築し,最先端の手法を大きなマージンで一貫して上回っていることがわかった。
プロジェクトページ: https://planargs.github.io
関連論文リスト
- Accurate and Complete Surface Reconstruction from 3D Gaussians via Direct SDF Learning [5.604709769018076]
3D Gaussian Splatting (3DGS) はフォトリアリスティック・ビュー・シンセサイザーの強力なパラダイムとして登場した。
3DGSパイプラインに直接サインドディスタンスフィールド(Signed Distance Field, SDF)学習を組み込む統合フレームワークであるDiGSを提案する。
DiGSは高い忠実度を維持しつつ,復元精度と完全性を常に向上することを示す。
論文 参考訳(メタデータ) (2025-09-09T08:17:46Z) - EG-Gaussian: Epipolar Geometry and Graph Network Enhanced 3D Gaussian Splatting [9.94641948288285]
EG-Gaussianは3次元シーン再構成にエピポーラ幾何学とグラフネットワークを利用する。
提案手法は3DGS法と比較して再構成精度を著しく向上させる。
論文 参考訳(メタデータ) (2025-04-18T08:10:39Z) - Planar Gaussian Splatting [42.74999794635269]
Planar Gaussian Splatting (PGS)は、3D幾何学を学習し、シーンの3D平面を解析する新しいニューラルネットワーク手法である。
PGSは3次元平面ラベルや深度監視を必要とせず、3次元平面再構成における最先端の性能を達成する。
論文 参考訳(メタデータ) (2024-12-02T19:46:43Z) - AGS-Mesh: Adaptive Gaussian Splatting and Meshing with Geometric Priors for Indoor Room Reconstruction Using Smartphones [19.429461194706786]
室内シーンの正確な3次元再構成のためのガウススメッティング法における接合面深度と正規化のアプローチを提案する。
我々のフィルタリング戦略と最適化設計は、メッシュ推定と新規ビュー合成の両方において大きな改善を示す。
論文 参考訳(メタデータ) (2024-11-28T17:04:32Z) - MonoGSDF: Exploring Monocular Geometric Cues for Gaussian Splatting-Guided Implicit Surface Reconstruction [86.87464903285208]
高品質な再構成のための神経信号距離場(SDF)とプリミティブを結合する新しい手法であるMonoGSDFを紹介する。
任意のスケールのシーンを扱うために,ロバストな一般化のためのスケーリング戦略を提案する。
実世界のデータセットの実験は、効率を保ちながら、以前の方法よりも優れています。
論文 参考訳(メタデータ) (2024-11-25T20:07:07Z) - GigaGS: Scaling up Planar-Based 3D Gaussians for Large Scene Surface Reconstruction [71.08607897266045]
3D Gaussian Splatting (3DGS) は新規なビュー合成において有望な性能を示した。
本研究は,大規模な景観表面再構築の課題に取り組むための最初の試みである。
3DGSを用いた大規模シーンのための高品質な表面再構成手法であるGigaGSを提案する。
論文 参考訳(メタデータ) (2024-09-10T17:51:39Z) - GaussianRoom: Improving 3D Gaussian Splatting with SDF Guidance and Monocular Cues for Indoor Scene Reconstruction [5.112375652774415]
本稿では,SDFと3DGSを統合し,正確な幾何再構成とリアルタイムレンダリングを行う統合最適化フレームワークを提案する。
本手法は, 表面再構成と新しいビュー合成の両面において, 最先端の性能を実現する。
論文 参考訳(メタデータ) (2024-05-30T03:46:59Z) - SAGS: Structure-Aware 3D Gaussian Splatting [53.6730827668389]
本研究では,シーンの形状を暗黙的に符号化する構造認識型ガウス散乱法(SAGS)を提案する。
SAGSは、最先端のレンダリング性能と、ベンチマークノベルビュー合成データセットのストレージ要件の削減を反映している。
論文 参考訳(メタデータ) (2024-04-29T23:26:30Z) - Gaussian Opacity Fields: Efficient Adaptive Surface Reconstruction in Unbounded Scenes [50.92217884840301]
Gaussian Opacity Fields (GOF)は、シーンにおける効率的で高品質で適応的な表面再構成のための新しいアプローチである。
GOFは3Dガウスのレイトレーシングに基づくボリュームレンダリングに由来する。
GOFは、表面再構成と新しいビュー合成において、既存の3DGSベースの手法を超越している。
論文 参考訳(メタデータ) (2024-04-16T17:57:19Z) - GaussianPro: 3D Gaussian Splatting with Progressive Propagation [49.918797726059545]
3DGSはStructure-from-Motion (SfM)技術によって生成されるポイントクラウドに大きく依存している。
本稿では, 3次元ガウスの密度化を導くために, プログレッシブ・プログレッシブ・プログレッシブ・ストラテジーを適用した新しい手法を提案する。
提案手法はデータセット上の3DGSを大幅に上回り,PSNRでは1.15dBの改善が見られた。
論文 参考訳(メタデータ) (2024-02-22T16:00:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。