論文の概要: Modeling Biological Multifunctionality with Echo State Networks
- arxiv url: http://arxiv.org/abs/2510.23940v1
- Date: Mon, 27 Oct 2025 23:47:51 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-29 15:35:36.624167
- Title: Modeling Biological Multifunctionality with Echo State Networks
- Title(参考訳): エコー状態ネットワークを用いた生体多機能性のモデル化
- Authors: Anastasia-Maria Leventi-Peetz, Jörg-Volker Peetz, Kai Weber, Nikolaos Zacharis,
- Abstract要約: 励起系力学と拡散過程を組み合わせた3次元多成分反応拡散モデルを開発した。
このモデルは時系列データを生成するために数値解析され、Echo State Networkのトレーニングと評価に使用された。
その結果,データ駆動型多機能ESNモデルを用いた生体力学のシミュレーションは実現可能かつ効果的であることが示唆された。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: In this work, a three-dimensional multicomponent reaction-diffusion model has been developed, combining excitable-system dynamics with diffusion processes and sharing conceptual features with the FitzHugh-Nagumo model. Designed to capture the spatiotemporal behavior of biological systems, particularly electrophysiological processes, the model was solved numerically to generate time-series data. These data were subsequently used to train and evaluate an Echo State Network (ESN), which successfully reproduced the system's dynamic behavior. The results demonstrate that simulating biological dynamics using data-driven, multifunctional ESN models is both feasible and effective.
- Abstract(参考訳): 本研究では,FitzHugh-Nagumoモデルを用いて,励起系力学と拡散過程を組み合わせた3次元多成分反応拡散モデルを開発した。
生体系の時空間的挙動,特に電気生理学的過程を捉えるために設計され,時系列データを生成するために数値解析された。
これらのデータはその後、システムのダイナミックな振る舞いをうまく再現するEcho State Network(ESN)のトレーニングと評価に使用された。
その結果,データ駆動型多機能ESNモデルを用いた生体力学のシミュレーションは実現可能かつ効果的であることが示唆された。
関連論文リスト
- Langevin Flows for Modeling Neural Latent Dynamics [81.81271685018284]
逐次変分自動エンコーダであるLangevinFlowを導入し、潜伏変数の時間的進化をアンダーダム化したLangevin方程式で制御する。
われわれのアプローチは、慣性、減衰、学習されたポテンシャル関数、力などの物理的事前を組み込んで、ニューラルネットワークにおける自律的および非自律的プロセスの両方を表現する。
本手法は,ロレンツ誘引器によって生成される合成神経集団に対する最先端のベースラインより優れる。
論文 参考訳(メタデータ) (2025-07-15T17:57:48Z) - Generative Modeling of Neural Dynamics via Latent Stochastic Differential Equations [1.5467259918426441]
本稿では,生体神経系の計算モデル構築のためのフレームワークを提案する。
我々は、微分ドリフトと拡散関数を持つ結合微分方程式系を用いる。
これらのハイブリッドモデルは,刺激によって誘発される神経および行動応答の予測において,競争力を発揮することを示す。
論文 参考訳(メタデータ) (2024-12-01T09:36:03Z) - Micro-Macro Consistency in Multiscale Modeling: Score-Based Model
Assisted Sampling of Fast/Slow Dynamical Systems [0.0]
物理に基づくマルチ時間動的システムの研究において,サンプリングの高度化のための技術が開発されている。
機械学習の分野では、生成モデルの一般的な目標は、この密度から経験的なサンプルをトレーニングした後、ターゲット密度からサンプリングすることである。
本研究では,SGMをこのような結合フレームワークで利用することにより,マルチスケールな動的システムにおけるサンプリングを改善することができることを示す。
論文 参考訳(メタデータ) (2023-12-10T00:46:37Z) - Conditional Generative Models for Simulation of EMG During Naturalistic
Movements [45.698312905115955]
本稿では、運動単位活性化電位波形を生成するために、逆向きに訓練された条件付き生成ニューラルネットワークを提案する。
本研究では,より少ない数の数値モデルの出力を高い精度で予測的に補間できることを実証する。
論文 参考訳(メタデータ) (2022-11-03T14:49:02Z) - Capturing Actionable Dynamics with Structured Latent Ordinary
Differential Equations [68.62843292346813]
本稿では,その潜在表現内でのシステム入力の変動をキャプチャする構造付き潜在ODEモデルを提案する。
静的変数仕様に基づいて,本モデルではシステムへの入力毎の変動要因を学習し,潜在空間におけるシステム入力の影響を分離する。
論文 参考訳(メタデータ) (2022-02-25T20:00:56Z) - Constructing Neural Network-Based Models for Simulating Dynamical
Systems [59.0861954179401]
データ駆動モデリングは、真のシステムの観測からシステムの力学の近似を学ぼうとする代替パラダイムである。
本稿では,ニューラルネットワークを用いた動的システムのモデル構築方法について検討する。
基礎的な概要に加えて、関連する文献を概説し、このモデリングパラダイムが克服すべき数値シミュレーションから最も重要な課題を概説する。
論文 参考訳(メタデータ) (2021-11-02T10:51:42Z) - Deep Bayesian Active Learning for Accelerating Stochastic Simulation [74.58219903138301]
Interactive Neural Process(INP)は、シミュレーションとアクティブな学習アプローチのためのディープラーニングフレームワークである。
能動的学習のために,NPベースモデルの潜時空間で計算された新しい取得関数Latent Information Gain (LIG)を提案する。
その結果,STNPは学習環境のベースラインを上回り,LIGは能動学習の最先端を達成していることがわかった。
論文 参考訳(メタデータ) (2021-06-05T01:31:51Z) - Relational State-Space Model for Stochastic Multi-Object Systems [24.234120525358456]
本稿では、逐次階層型潜在変数モデルであるリレーショナル状態空間モデル(R-SSM)を紹介する。
R-SSMはグラフニューラルネットワーク(GNN)を用いて、複数の相関オブジェクトの結合状態遷移をシミュレートする。
R-SSMの実用性は、合成および実時間時系列データセットで実証的に評価される。
論文 参考訳(メタデータ) (2020-01-13T03:45:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。