論文の概要: Forecasting precipitation in the Arctic using probabilistic machine learning informed by causal climate drivers
- arxiv url: http://arxiv.org/abs/2510.24254v1
- Date: Tue, 28 Oct 2025 10:05:34 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-29 15:35:37.010783
- Title: Forecasting precipitation in the Arctic using probabilistic machine learning informed by causal climate drivers
- Title(参考訳): 気候要因による確率論的機械学習による北極域の降水予測
- Authors: Madhurima Panja, Dhiman Das, Tanujit Chakraborty, Arnob Ray, R. Athulya, Chittaranjan Hens, Syamal K. Dana, Nuncio Murukesh, Dibakar Ghosh,
- Abstract要約: 本研究では,降水の動態と重症度をモデル化し,予測するための確率論的機械学習フレームワークを提案する。
不確実性を考慮するために、校正された非パラメトリック予測区間の生成を可能にする共形予測法を用いる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Understanding and forecasting precipitation events in the Arctic maritime environments, such as Bear Island and Ny-{\AA}lesund, is crucial for assessing climate risk and developing early warning systems in vulnerable marine regions. This study proposes a probabilistic machine learning framework for modeling and predicting the dynamics and severity of precipitation. We begin by analyzing the scale-dependent relationships between precipitation and key atmospheric drivers (e.g., temperature, relative humidity, cloud cover, and air pressure) using wavelet coherence, which captures localized dependencies across time and frequency domains. To assess joint causal influences, we employ Synergistic-Unique-Redundant Decomposition, which quantifies the impact of interaction effects among each variable on future precipitation dynamics. These insights inform the development of data-driven forecasting models that incorporate both historical precipitation and causal climate drivers. To account for uncertainty, we employ the conformal prediction method, which enables the generation of calibrated non-parametric prediction intervals. Our results underscore the importance of utilizing a comprehensive framework that combines causal analysis with probabilistic forecasting to enhance the reliability and interpretability of precipitation predictions in Arctic marine environments.
- Abstract(参考訳): ベア島やNy-{\AA}lesundのような北極海の海洋環境における降水現象の理解と予測は、気候リスクを評価し、脆弱な海洋地域で早期警戒システムの開発に不可欠である。
本研究では,降水の動態と重症度をモデル化し,予測するための確率論的機械学習フレームワークを提案する。
まず、ウェーブレットコヒーレンス(ウェーブレットコヒーレンス)を用いて、降水量と主要な大気要因(例えば、温度、相対湿度、雲の覆い、気圧)のスケール依存的な関係を分析する。
共同因果関係を評価するために,各変数間の相互作用効果が将来の降水動態に与える影響を定量化するSynergistic-Unique-Redundant Decompositionを用いた。
これらの知見は、歴史的降水と因果的気候要因の両方を組み込んだデータ駆動予測モデルの開発を示唆している。
不確実性を考慮するために、校正された非パラメトリック予測区間の生成を可能にする共形予測法を用いる。
本研究は,海洋環境における降水予測の信頼性と解釈可能性を高めるために,因果解析と確率予測を組み合わせた総合的な枠組みを活用することの重要性を明らかにするものである。
関連論文リスト
- Synergistic Neural Forecasting of Air Pollution with Stochastic Sampling [50.3911487821783]
大気汚染は世界的な健康と環境のリスクの先駆けであり、特に山火事、都市干ばつ、塵嵐による大気汚染の急激な増加に弱い地域ではなおもである。
本稿では,気象および大気組成データを統合し,平均および極端汚染レベルの予測を改善する高分解能神経予測モデルであるSynCastを提案する。
論文 参考訳(メタデータ) (2025-10-28T01:18:00Z) - Air Quality Prediction with A Meteorology-Guided Modality-Decoupled Spatio-Temporal Network [47.699409089023696]
大気質の予測は公衆衛生と環境保護において重要な役割を担っている。
既存の研究は大気の質予測において重要な役割を過小評価している。
MDSTNetは、予測のための大気汚染依存性を明示的にキャプチャするエンコーダフレームワークである。
ChinaAirNetは、大気の質記録と多気圧レベルの気象観測を組み合わせた最初のデータセットである。
論文 参考訳(メタデータ) (2025-04-14T09:18:11Z) - Efficient Localized Adaptation of Neural Weather Forecasting: A Case Study in the MENA Region [62.09891513612252]
地域レベルのダウンストリームタスクに特化して、リミテッド・エリア・モデリングに焦点を合わせ、モデルをトレーニングします。
我々は,気象予報が水資源の管理,農業,極度の気象事象の影響軽減に重要であるという,気象学的課題からMENA地域を考察する。
本研究では,パラメータ効率のよい微調整手法,特にローランド適応(LoRA)とその変種を統合することの有効性を検証することを目的とした。
論文 参考訳(メタデータ) (2024-09-11T19:31:56Z) - Using Deep Learning to Identify Initial Error Sensitivity for Interpretable ENSO Forecasts [0.0]
本稿では,ディープラーニングとモデル・アナログ予測を統合した解釈可能なモデル・アナログを提案する。
我々は,地域地球系モデルバージョン2大アンサンブルを用いて,季節ごとの時間スケールでエルニーニョ南部振動(ENSO)を予測する。
その結果,赤道太平洋海面温度異常の予測は9~12ヶ月で10%改善した。
論文 参考訳(メタデータ) (2024-04-23T18:10:18Z) - Long-term drought prediction using deep neural networks based on geospatial weather data [75.38539438000072]
農業計画や保険には1年前から予測される高品質の干ばつが不可欠だ。
私たちは、体系的なエンドツーエンドアプローチを採用するエンドツーエンドアプローチを導入することで、干ばつデータに取り組みます。
主な発見は、TransformerモデルであるEarthFormerが、正確な短期(最大6ヶ月)の予測を行う際の例外的なパフォーマンスである。
論文 参考訳(メタデータ) (2023-09-12T13:28:06Z) - Intelligent model for offshore China sea fog forecasting [0.7503129292751938]
本研究は, 数値気象予報モデルに埋もれた深海霧予測手法を開発することを目的とする。
本研究では,海霧発生の要因を解明するために,時間差相関解析手法を用いて鍵予測器を同定し,そのメカニズムを解明する。
提案手法の精度を検証するため,1年にわたる包括的データセットを用いて評価を行った。
論文 参考訳(メタデータ) (2023-07-20T04:46:34Z) - Extreme precipitation forecasting using attention augmented convolutions [0.913755431537592]
降雨予測のための自己注意型拡張畳み込み機構を提案する。
実験の結果,このフレームワークは古典的畳み込みモデルよりも12%優れていた。
提案手法は,極端な変化の物理的原因を把握するためのツールとして,機械学習を向上させる。
論文 参考訳(メタデータ) (2022-01-31T18:16:03Z) - Improving seasonal forecast using probabilistic deep learning [1.1988695717766686]
我々は,季節予測能力と予測診断力を高めるための確率論的ディープニューラルネットワークモデルを開発した。
気候シミュレーションで符号化された複雑な物理的関係を活用することで、我々のモデルは好ましい決定論的および確率論的スキルを示す。
季節変動の支配的なモードであるエルニーニョ/南部の振動が、世界の季節予測可能性をどのように調節するかについて、より決定的な答えを与える。
論文 参考訳(メタデータ) (2020-10-27T21:02:26Z) - A generative adversarial network approach to (ensemble) weather
prediction [91.3755431537592]
本研究では,500hPaの圧力レベル,2m温度,24時間の総降水量を予測するために,条件付き深部畳み込み生成対向ネットワークを用いた。
提案されたモデルは、2019年に関連する気象分野を予測することを目的として、2015年から2018年までの4年間のERA5の再分析データに基づいて訓練されている。
論文 参考訳(メタデータ) (2020-06-13T20:53:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。