論文の概要: Metadata-Driven Retrieval-Augmented Generation for Financial Question Answering
- arxiv url: http://arxiv.org/abs/2510.24402v1
- Date: Tue, 28 Oct 2025 13:16:36 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-29 15:35:37.192166
- Title: Metadata-Driven Retrieval-Augmented Generation for Financial Question Answering
- Title(参考訳): 財務質問応答のためのメタデータ駆動検索生成
- Authors: Michail Dadopoulos, Anestis Ladas, Stratos Moschidis, Ioannis Negkakis,
- Abstract要約: 文脈的にリッチなドキュメントチャンクを作成するための高度なインデックスパイプラインを導入します。
我々は、検索前フィルタリング、検索後再ランク付け、エンリッチな埋め込みなど、さまざまな拡張のスペクトルをベンチマークする。
提案する最適アーキテクチャは、LLM駆動の事前検索最適化とコンテキスト埋め込みを組み合わせることで、優れた性能を実現する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Retrieval-Augmented Generation (RAG) struggles on long, structured financial filings where relevant evidence is sparse and cross-referenced. This paper presents a systematic investigation of advanced metadata-driven Retrieval-Augmented Generation (RAG) techniques, proposing and evaluating a novel, multi-stage RAG architecture that leverages LLM-generated metadata. We introduce a sophisticated indexing pipeline to create contextually rich document chunks and benchmark a spectrum of enhancements, including pre-retrieval filtering, post-retrieval reranking, and enriched embeddings, benchmarked on the FinanceBench dataset. Our results reveal that while a powerful reranker is essential for precision, the most significant performance gains come from embedding chunk metadata directly with text ("contextual chunks"). Our proposed optimal architecture combines LLM-driven pre-retrieval optimizations with these contextual embeddings to achieve superior performance. Additionally, we present a custom metadata reranker that offers a compelling, cost-effective alternative to commercial solutions, highlighting a practical trade-off between peak performance and operational efficiency. This study provides a blueprint for building robust, metadata-aware RAG systems for financial document analysis.
- Abstract(参考訳): Retrieval-Augmented Generation (RAG) は、関連する証拠が不足し、相互参照される長い、構造化された財務書類に苦しむ。
本稿では,LLM生成メタデータを利用した新しい多段階RAGアーキテクチャの提案と評価を行う。
我々は、文脈的にリッチなドキュメントチャンクを作成するための洗練されたインデックスパイプラインを導入し、ファイナンスベンチデータセットでベンチマークされた検索前フィルタリング、検索後再ランク付け、エンリッチな埋め込みを含む、さまざまな拡張スペクトルをベンチマークする。
以上の結果から,強力なリランカは正確性に不可欠であるが,チャンクメタデータを直接テキストに埋め込むことによって,最も重要なパフォーマンス向上が期待できることがわかった("contextual chunks")。
提案する最適アーキテクチャは、LLM駆動の事前検索最適化とコンテキスト埋め込みを組み合わせることで、優れた性能を実現する。
さらに、商用ソリューションに代わる魅力的な費用対効果を提供するカスタムメタデータリランカを提案し、ピークパフォーマンスと運用効率の実践的なトレードオフを強調します。
本研究は、財務文書分析のためのロバストでメタデータを意識したRAGシステムを構築するための青写真を提供する。
関連論文リスト
- Towards Mixed-Modal Retrieval for Universal Retrieval-Augmented Generation [72.34977512403643]
Retrieval-Augmented Generation (RAG) は、外部コーパスから関連文書を取得することで、大規模言語モデル(LLM)を強化するための強力なパラダイムとして登場した。
既存のRAGシステムは、主に平凡なテキスト文書に焦点を当てており、クエリとドキュメントの両方が(テキストや画像のような)混合モダリティを含む実世界のシナリオでは、しばしば不足している。
我々は,Universal Retrieval-Augmented Generationシナリオに適した混合モーダル-混合モーダルレトリバーであるNyxを提案する。
論文 参考訳(メタデータ) (2025-10-20T09:56:43Z) - Scaling Beyond Context: A Survey of Multimodal Retrieval-Augmented Generation for Document Understanding [61.36285696607487]
文書理解は、財務分析から科学的発見への応用に不可欠である。
現在のアプローチでは、OCRベースのパイプラインがLarge Language Models(LLM)やネイティブのMultimodal LLMs(MLLM)に制限されている。
Retrieval-Augmented Generation (RAG)は、外部データの基底モデルを支援するが、文書のマルチモーダルな性質は、テキスト、テーブル、チャート、レイアウトを組み合わせることで、より高度なパラダイムを必要とする。
論文 参考訳(メタデータ) (2025-10-17T02:33:16Z) - FinAgentBench: A Benchmark Dataset for Agentic Retrieval in Financial Question Answering [57.18367828883773]
FinAgentBenchは、ファイナンスにおける多段階推論によるエージェント検索を評価するためのベンチマークである。
このベンチマークは、S&P-500上場企業に関する26Kのエキスパートアノテート例から成っている。
我々は,最先端モデルの集合を評価し,対象の微調整がエージェント検索性能を大幅に向上することを示す。
論文 参考訳(メタデータ) (2025-08-07T22:15:22Z) - Direct Retrieval-augmented Optimization: Synergizing Knowledge Selection and Language Models [83.8639566087953]
本稿では,2つの主要コンポーネントのエンドツーエンドトレーニングを可能にするDROという,直接検索拡張最適化フレームワークを提案する。
DROは、 (i) 文書置換推定と (ii) 再重み付けされ、段階的に改善されたRAGコンポーネントの2つのフェーズの間で交代する。
理論解析により,DROは強化学習における政策段階的な手法に類似していることが明らかとなった。
論文 参考訳(メタデータ) (2025-05-05T23:54:53Z) - Optimizing Retrieval Strategies for Financial Question Answering Documents in Retrieval-Augmented Generation Systems [5.712288463584192]
Retrieval-Augmented Generation (RAG)は、大規模言語モデル(LLM)における幻覚を緩和するための有望なフレームワークとして登場した。
本研究では,財務文書の検索を効率化する,効率的なエンドツーエンドRAGパイプラインを提案する。
論文 参考訳(メタデータ) (2025-03-19T13:21:49Z) - REAL-MM-RAG: A Real-World Multi-Modal Retrieval Benchmark [16.55516587540082]
本稿では,リアルタイム検索に不可欠な4つの重要な特性に対処する自動生成ベンチマークREAL-MM-RAGを紹介する。
本稿では,キーワードマッチング以外のモデルのセマンティック理解を評価するために,クエリリフレッシングに基づく多言語レベルのスキームを提案する。
我々のベンチマークでは、特にテーブル重ドキュメントの扱いや、クエリ・リフレージングに対する堅牢性において、重要なモデルの弱点が明らかになっている。
論文 参考訳(メタデータ) (2025-02-17T22:10:47Z) - VisRAG: Vision-based Retrieval-augmented Generation on Multi-modality Documents [66.42579289213941]
Retrieval-augmented Generation (RAG) は、大規模言語モデルが外部知識ソースを生成に活用できる効果的な手法である。
本稿では、視覚言語モデル(VLM)に基づくRAGパイプラインを確立することにより、この問題に対処するVisRAGを紹介する。
このパイプラインでは、まず文書を解析してテキストを得る代わりに、VLMを画像として直接埋め込んで、VLMの生成を強化する。
論文 参考訳(メタデータ) (2024-10-14T15:04:18Z) - Meta Knowledge for Retrieval Augmented Large Language Models [0.0]
大規模言語モデル(LLM)のための新しいデータ中心型RAGワークフローを提案する。
提案手法は,各文書にメタデータと合成質問文(QA)を生成することに依存する。
合成質問マッチングによる拡張クエリの使用は、従来のRAGパイプラインよりも大幅に優れていることを示す。
論文 参考訳(メタデータ) (2024-08-16T20:55:21Z) - RAGEval: Scenario Specific RAG Evaluation Dataset Generation Framework [66.93260816493553]
本稿では,様々なシナリオにまたがってRAGシステムを評価するためのフレームワークであるRAGvalを紹介する。
事実の正確性に焦点をあてて,完全性,幻覚,不適切性の3つの新しい指標を提案する。
実験結果から, RAGEvalは, 生成した試料の明瞭度, 安全性, 適合性, 豊かさにおいて, ゼロショット法とワンショット法より優れていた。
論文 参考訳(メタデータ) (2024-08-02T13:35:11Z) - Improving Retrieval for RAG based Question Answering Models on Financial Documents [0.046603287532620746]
本稿では,RAGパイプラインの既存の制約について検討し,テキスト検索の方法を紹介する。
高度なチャンキングテクニック、クエリ拡張、メタデータアノテーションの組み込み、再ランク付けアルゴリズムの適用、埋め込みアルゴリズムの微調整などの戦略を練っている。
論文 参考訳(メタデータ) (2024-03-23T00:49:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。