論文の概要: Optimizing Retrieval Strategies for Financial Question Answering Documents in Retrieval-Augmented Generation Systems
- arxiv url: http://arxiv.org/abs/2503.15191v1
- Date: Wed, 19 Mar 2025 13:21:49 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-20 15:21:35.644157
- Title: Optimizing Retrieval Strategies for Financial Question Answering Documents in Retrieval-Augmented Generation Systems
- Title(参考訳): 検索型生成システムにおける財務質問応答文書の検索戦略の最適化
- Authors: Sejong Kim, Hyunseo Song, Hyunwoo Seo, Hyunjun Kim,
- Abstract要約: Retrieval-Augmented Generation (RAG)は、大規模言語モデル(LLM)における幻覚を緩和するための有望なフレームワークとして登場した。
本研究では,財務文書の検索を効率化する,効率的なエンドツーエンドRAGパイプラインを提案する。
- 参考スコア(独自算出の注目度): 5.712288463584192
- License:
- Abstract: Retrieval-Augmented Generation (RAG) has emerged as a promising framework to mitigate hallucinations in Large Language Models (LLMs), yet its overall performance is dependent on the underlying retrieval system. In the finance domain, documents such as 10-K reports pose distinct challenges due to domain-specific vocabulary and multi-hierarchical tabular data. In this work, we introduce an efficient, end-to-end RAG pipeline that enhances retrieval for financial documents through a three-phase approach: pre-retrieval, retrieval, and post-retrieval. In the pre-retrieval phase, various query and corpus preprocessing techniques are employed to enrich input data. During the retrieval phase, we fine-tuned state-of-the-art (SOTA) embedding models with domain-specific knowledge and implemented a hybrid retrieval strategy that combines dense and sparse representations. Finally, the post-retrieval phase leverages Direct Preference Optimization (DPO) training and document selection methods to further refine the results. Evaluations on seven financial question answering datasets-FinDER, FinQABench, FinanceBench, TATQA, FinQA, ConvFinQA, and MultiHiertt-demonstrate substantial improvements in retrieval performance, leading to more accurate and contextually appropriate generation. These findings highlight the critical role of tailored retrieval techniques in advancing the effectiveness of RAG systems for financial applications. A fully replicable pipeline is available on GitHub: https://github.com/seohyunwoo-0407/GAR.
- Abstract(参考訳): Retrieval-Augmented Generation (RAG) は、Large Language Models (LLM) における幻覚を緩和するための有望なフレームワークとして登場したが、全体的な性能は基盤となる検索システムに依存している。
金融分野において、10-Kレポートのような文書は、ドメイン固有の語彙と多階層的な表型データのために、異なる課題を提起する。
本研究では,検索前,検索後,検索後という3段階のアプローチにより,財務文書の検索を効率化する,効率的なエンドツーエンドRAGパイプラインを提案する。
検索前の段階では、入力データを強化するために様々なクエリとコーパス前処理技術が使用される。
検索期間中、我々はドメイン固有の知識とSOTA(State-of-the-art)埋め込みモデルを微調整し、密度とスパース表現を組み合わせたハイブリッド検索戦略を実装した。
最後に、検索後のフェーズでは、DPO(Direct Preference Optimization)トレーニングと文書選択手法を活用して結果をさらに洗練する。
FinDER, FinQABench, FinanceBench, TATQA, FinQA, ConvFinQA, MultiHiertt-demonstrateの7つの財務質問応答データセットの評価により, 検索性能が大幅に向上し, より正確で適切な生成が可能となった。
これらの知見は,RAGシステムの有効性向上における適合検索技術の重要性を浮き彫りにしている。
完全なレプリカブルパイプラインはGitHubで公開されている。
関連論文リスト
- Learning More Effective Representations for Dense Retrieval through Deliberate Thinking Before Search [65.53881294642451]
ディリベレート思考に基づくDense Retriever (DEBATER)
DEBATERは、ステップバイステップの思考プロセスを通じて、より効果的な文書表現を学習できるようにすることにより、最近の密集型検索機能を強化している。
実験の結果,DEBATERはいくつかのベンチマークで既存手法よりも優れていた。
論文 参考訳(メタデータ) (2025-02-18T15:56:34Z) - Enhancing Financial Time-Series Forecasting with Retrieval-Augmented Large Language Models [29.769616823587594]
金融時系列予測に特化して設計された最初の検索拡張世代(RAG)フレームワークを提案する。
フレームワークには3つの重要なイノベーションが含まれている: 微調整された1B大言語モデル(StockLLM)をバックボーンとし、LSMフィードバックによって拡張された新しい候補選択方法と、クエリと歴史的に重要なシーケンスとの類似性を最大化するトレーニング目標である。
論文 参考訳(メタデータ) (2025-02-09T12:26:05Z) - GeAR: Generation Augmented Retrieval [82.20696567697016]
文書検索技術は大規模情報システム開発の基礎となる。
一般的な手法は、バイエンコーダを構築し、セマンティックな類似性を計算することである。
我々は、よく設計された融合およびデコードモジュールを組み込んだ $textbfGe$neration という新しい手法を提案する。
論文 参考訳(メタデータ) (2025-01-06T05:29:00Z) - VisDoM: Multi-Document QA with Visually Rich Elements Using Multimodal Retrieval-Augmented Generation [100.06122876025063]
本稿では,マルチドキュメント設定でQAシステムを評価するために設計された,初の総合ベンチマークであるVisDoMBenchを紹介する。
視覚とテキストのRAGを同時に利用する新しいマルチモーダル検索拡張生成(RAG)手法であるVisDoMRAGを提案する。
論文 参考訳(メタデータ) (2024-12-14T06:24:55Z) - Adapting to Non-Stationary Environments: Multi-Armed Bandit Enhanced Retrieval-Augmented Generation on Knowledge Graphs [23.357843519762483]
近年の研究では、検索-拡張生成フレームワークと知識グラフを組み合わせることで、大規模言語モデルの推論能力を強力に向上することが示されている。
我々は多目的帯域拡張RAGフレームワークを導入し、多様な機能を持つ複数の検索手法をサポートする。
本手法は,定常環境下での最先端性能を達成しつつ,非定常環境でのベースライン手法を著しく向上させる。
論文 参考訳(メタデータ) (2024-12-10T15:56:03Z) - Multi-Reranker: Maximizing performance of retrieval-augmented generation in the FinanceRAG challenge [5.279257531335345]
本稿では,ACM-ICAIF '24 FinanceRAGコンペティションのための,高性能で財務特化度の高いRetrieval-Augmented Generation(RAG)システムの開発について述べる。
我々は,検索前段階におけるクエリ拡張とコーパスの洗練に関するアブレーション研究を通じて,性能を最適化した。
特に,生成フェーズの長いコンテキストサイズを管理するための効率的な手法を導入し,性能を犠牲にすることなく応答品質を大幅に改善した。
論文 参考訳(メタデータ) (2024-11-23T09:56:21Z) - SEC-QA: A Systematic Evaluation Corpus for Financial QA [12.279234447220155]
既存のデータセットは、多くの場合、サイズ、コンテキスト、実用的なアプリケーションとの関連性によって制約される。
2つの重要な特徴を持つ継続的データセット生成フレームワークであるSEC-QAを提案する。
本稿では,複雑な情報検索と定量的推論パイプラインの実行能力を向上させるプログラム・オブ・思想に基づくQAシステムを提案する。
論文 参考訳(メタデータ) (2024-06-20T15:12:41Z) - Mixed-modality Representation Learning and Pre-training for Joint
Table-and-Text Retrieval in OpenQA [85.17249272519626]
最適化された OpenQA Table-Text Retriever (OTTeR) を提案する。
検索中心の混合モード合成事前学習を行う。
OTTeRはOTT-QAデータセット上でのテーブル・アンド・テキスト検索の性能を大幅に改善する。
論文 参考訳(メタデータ) (2022-10-11T07:04:39Z) - Autoregressive Search Engines: Generating Substrings as Document
Identifiers [53.0729058170278]
自動回帰言語モデルは、回答を生成するデファクト標準として現れています。
これまでの研究は、探索空間を階層構造に分割する方法を探究してきた。
本研究では,検索空間の任意の構造を強制しない代替として,経路内のすべてのngramを識別子として使用することを提案する。
論文 参考訳(メタデータ) (2022-04-22T10:45:01Z) - CODER: An efficient framework for improving retrieval through
COntextualized Document Embedding Reranking [11.635294568328625]
本稿では,最小計算コストで広範囲の検索モデルの性能を向上させるためのフレームワークを提案する。
ベース密度検索法により抽出された事前計算された文書表現を利用する。
実行時に第一段階のメソッドの上に無視可能な計算オーバーヘッドを発生させ、最先端の高密度検索手法と簡単に組み合わせられるようにする。
論文 参考訳(メタデータ) (2021-12-16T10:25:26Z) - Automated Concatenation of Embeddings for Structured Prediction [75.44925576268052]
本稿では, 埋め込みの自動結合(ACE)を提案し, 構造予測タスクにおける埋め込みのより優れた結合を見つけるプロセスを自動化する。
我々は、強化学習の戦略に従い、制御器のパラメータを最適化し、タスクモデルの精度に基づいて報酬を計算する。
論文 参考訳(メタデータ) (2020-10-10T14:03:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。