論文の概要: WebLeaper: Empowering Efficiency and Efficacy in WebAgent via Enabling Info-Rich Seeking
- arxiv url: http://arxiv.org/abs/2510.24697v1
- Date: Tue, 28 Oct 2025 17:51:42 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-29 15:35:37.323538
- Title: WebLeaper: Empowering Efficiency and Efficacy in WebAgent via Enabling Info-Rich Seeking
- Title(参考訳): WebLeaper: WebAgentの効率性と効率性を高めるためにInfo-Rich 検索を有効活用する
- Authors: Zhengwei Tao, Haiyang Shen, Baixuan Li, Wenbiao Yin, Jialong Wu, Kuan Li, Zhongwang Zhang, Huifeng Yin, Rui Ye, Liwen Zhang, Xinyu Wang, Pengjun Xie, Jingren Zhou, Yong Jiang,
- Abstract要約: 情報検索は、自律的な推論と意思決定を可能にする中核的な能力である。
我々は、高カバレッジなISタスクを構築し、効率的なソリューショントラジェクトリを生成するためのフレームワークであるWebLeaperを提案する。
本手法は,強いベースラインに対する有効性と効率性の向上を継続的に達成する。
- 参考スコア(独自算出の注目度): 60.35109192765302
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large Language Model (LLM)-based agents have emerged as a transformative approach for open-ended problem solving, with information seeking (IS) being a core capability that enables autonomous reasoning and decision-making. While prior research has largely focused on improving retrieval depth, we observe that current IS agents often suffer from low search efficiency, which in turn constrains overall performance. A key factor underlying this inefficiency is the sparsity of target entities in training tasks, which limits opportunities for agents to learn and generalize efficient search behaviors. To address these challenges, we propose WebLeaper, a framework for constructing high-coverage IS tasks and generating efficient solution trajectories. We formulate IS as a tree-structured reasoning problem, enabling a substantially larger set of target entities to be embedded within a constrained context. Leveraging curated Wikipedia tables, we propose three variants for synthesizing IS tasks, Basic, Union, and Reverse-Union, to systematically increase both IS efficiency and efficacy. Finally, we curate training trajectories by retaining only those that are simultaneously accurate and efficient, ensuring that the model is optimized for both correctness and search performance. Extensive experiments on both basic and comprehensive settings, conducted on five IS benchmarks, BrowserComp, GAIA, xbench-DeepSearch, WideSearch, and Seal-0, demonstrate that our method consistently achieves improvements in both effectiveness and efficiency over strong baselines.
- Abstract(参考訳): 大規模言語モデル(LLM)ベースのエージェントは、自律的推論と意思決定を可能にする中核的な能力である情報探索(IS)とともに、オープンエンドの問題解決のための変革的なアプローチとして登場した。
従来の研究は検索深度の改善に重点を置いてきたが、現在のISエージェントが探索効率の低下に悩まされることがしばしばあり、それによって全体的な性能が制約される。
この非効率性の根底にある重要な要因は、訓練タスクにおけるターゲットエンティティの空間性であり、エージェントが効率的な探索行動を学び、一般化する機会を制限する。
これらの課題に対処するため、我々は高カバレッジなISタスクを構築し、効率的なソリューショントラジェクトリを生成するためのフレームワークであるWebLeaperを提案する。
我々はISを木構造推論問題として定式化し、より大きなターゲットエンティティのセットを制約付きコンテキスト内に埋め込むことを可能にする。
キュレートしたウィキペディアのテーブルを活用し,ISタスク,ベーシック,ユニオン,リバース・ユニニオンの3つの変種を提案し,IS効率と有効性を体系的に向上させる。
最後に,モデルが精度と探索性能の両方に最適化されていることを保証し,同時に正確かつ効率のよいモデルのみを保持することにより,トレーニングトラジェクトリをキュレートする。
5つのISベンチマーク(BrowserComp, GAIA, xbench-DeepSearch, WideSearch, Seal-0)で実施された基本的および包括的設定の広範な実験により,本手法が強いベースラインよりも有効性と効率性の向上を一貫して達成できることが実証された。
関連論文リスト
- Can LLMs Correct Themselves? A Benchmark of Self-Correction in LLMs [57.10533368622962]
大規模言語モデル(LLM)の自己補正は、推論性能を高める重要な要素として現れる。
本研究では,自己補正戦略の有効性を評価するためのベンチマークであるCorrectBenchを紹介する。
その結果,1) 自己補正手法は, 複雑な推論タスクにおいて, 精度を向上させることが可能であり, 2) 異なる自己補正戦略の混合により, 効率は低下するものの, さらなる改善がもたらされることが明らかとなった。
論文 参考訳(メタデータ) (2025-10-17T02:40:19Z) - Application of LLM Guided Reinforcement Learning in Formation Control with Collision Avoidance [1.1718316049475228]
マルチエージェントシステム(Multi-Agent Systems、MAS)は、個々のエージェントの協調作業を通じて複雑な目的を達成する。
本稿では,効果的な報酬関数を設計する上での課題を克服する新しい枠組みを提案する。
タスクの優先順位付けにおいて,大規模言語モデル(LLM)を付与することにより,オンライン上で動的に調整可能な報酬関数を生成する。
論文 参考訳(メタデータ) (2025-07-22T09:26:00Z) - On the Role of Feedback in Test-Time Scaling of Agentic AI Workflows [71.92083784393418]
エージェントAI(自律的な計画と行動を行うシステム)は広く普及しているが、複雑なタスクにおけるタスクの成功率は低いままである。
推論時のアライメントは、サンプリング、評価、フィードバックの3つのコンポーネントに依存します。
本稿では,様々な形態の批判から抽出されたフィードバックを繰り返し挿入するIterative Agent Decoding(IAD)を紹介する。
論文 参考訳(メタデータ) (2025-04-02T17:40:47Z) - Optima: Optimizing Effectiveness and Efficiency for LLM-Based Multi-Agent System [75.25394449773052]
大規模言語モデル (LLM) に基づくマルチエージェントシステム (MAS) は協調的問題解決において顕著な可能性を示している。
通信効率の低下、スケーラビリティの低下、効果的なパラメータ更新方法の欠如などです。
本稿では,コミュニケーション効率とタスク効率を両立させ,これらの課題に対処する新しいフレームワークOptimaを提案する。
論文 参考訳(メタデータ) (2024-10-10T17:00:06Z) - WeKnow-RAG: An Adaptive Approach for Retrieval-Augmented Generation Integrating Web Search and Knowledge Graphs [10.380692079063467]
本稿では,Web検索と知識グラフを統合したWeKnow-RAGを提案する。
まず,知識グラフの構造化表現と高次ベクトル検索の柔軟性を組み合わせることで,LLM応答の精度と信頼性を向上させる。
提案手法は,情報検索の効率と精度を効果的にバランスさせ,全体の検索プロセスを改善する。
論文 参考訳(メタデータ) (2024-08-14T15:19:16Z) - SEE: Strategic Exploration and Exploitation for Cohesive In-Context Prompt Optimization [8.975505323004427]
大規模言語モデル(LLM)のための新しい結合型インコンテキストプロンプト最適化フレームワークを提案する。
SEEは、メタヒューリスティック最適化の原則を採用し、戦略的に探索と活用を行うスケーラブルで効率的なプロンプト最適化フレームワークである。
SEEは最先端のベースライン法を大幅に上回り、平均性能は13.94、計算コストは58.67である。
論文 参考訳(メタデータ) (2024-02-17T17:47:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。