論文の概要: FARSIQA: Faithful and Advanced RAG System for Islamic Question Answering
- arxiv url: http://arxiv.org/abs/2510.25621v1
- Date: Wed, 29 Oct 2025 15:25:34 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-30 15:50:45.79003
- Title: FARSIQA: Faithful and Advanced RAG System for Islamic Question Answering
- Title(参考訳): FARSIQA:イスラム質問応答のための忠実で高度なRAGシステム
- Authors: Mohammad Aghajani Asl, Behrooz Minaei Bidgoli,
- Abstract要約: 本稿では,ペルシア・イスラム領域におけるFARSIQAの導入について紹介する。
FARSIQAは、我々の革新的なFAIR-RAGアーキテクチャの上に構築されています。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The advent of Large Language Models (LLMs) has revolutionized Natural Language Processing, yet their application in high-stakes, specialized domains like religious question answering is hindered by challenges like hallucination and unfaithfulness to authoritative sources. This issue is particularly critical for the Persian-speaking Muslim community, where accuracy and trustworthiness are paramount. Existing Retrieval-Augmented Generation (RAG) systems, relying on simplistic single-pass pipelines, fall short on complex, multi-hop queries requiring multi-step reasoning and evidence aggregation. To address this gap, we introduce FARSIQA, a novel, end-to-end system for Faithful Advanced Question Answering in the Persian Islamic domain. FARSIQA is built upon our innovative FAIR-RAG architecture: a Faithful, Adaptive, Iterative Refinement framework for RAG. FAIR-RAG employs a dynamic, self-correcting process: it adaptively decomposes complex queries, assesses evidence sufficiency, and enters an iterative loop to generate sub-queries, progressively filling information gaps. Operating on a curated knowledge base of over one million authoritative Islamic documents, FARSIQA demonstrates superior performance. Rigorous evaluation on the challenging IslamicPCQA benchmark shows state-of-the-art performance: the system achieves a remarkable 97.0% in Negative Rejection - a 40-point improvement over baselines - and a high Answer Correctness score of 74.3%. Our work establishes a new standard for Persian Islamic QA and validates that our iterative, adaptive architecture is crucial for building faithful, reliable AI systems in sensitive domains.
- Abstract(参考訳): 大規模言語モデル(LLM)の出現は自然言語処理に革命をもたらしたが、宗教的な質問応答のような高度な専門分野への応用は、権威のある情報源に対する幻覚や不信心といった課題によって妨げられている。
この問題は、正確さと信頼性が最重要であるペルシア語を話すムスリムコミュニティにとって特に重要である。
既存のレトリーバル拡張生成(RAG)システムは、単純化されたシングルパスパイプラインに依存しており、マルチステップの推論とエビデンスアグリゲーションを必要とする複雑なマルチホップクエリに不足している。
このギャップに対処するため,ペルシャ・イスラム領域におけるFARSIQAを導入する。
FARSIQAは、我々の革新的なFAIR-RAGアーキテクチャの上に構築されています。
複雑なクエリを適応的に分解し、エビデンスを十分評価し、反復ループに入り、サブクエリを生成し、情報ギャップを徐々に埋める。
FARSIQAは100万人以上の権威あるイスラム文書のキュレートされた知識ベースで運用されており、優れたパフォーマンスを示している。
挑戦的なISISPCQAベンチマークの厳密な評価は、最先端のパフォーマンスを示している:システムは、否定的拒絶(ベースラインよりも40ポイント改善)で97.0%、回答正当性スコアは74.3%である。
我々の研究は、ペルシアのイスラムQAの新しい標準を確立し、我々の反復的で適応的なアーキテクチャが、センシティブなドメインで忠実で信頼性の高いAIシステムを構築するために重要であることを検証する。
関連論文リスト
- FAIR-RAG: Faithful Adaptive Iterative Refinement for Retrieval-Augmented Generation [0.0]
本稿では、標準的なRAGパイプラインを動的にエビデンス駆動の推論プロセスに変換する新しいエージェントフレームワークであるFAIR-RAGを紹介する。
本稿では,HotpotQA,2WikiMultiHopQA,MusiQueなどのマルチホップQAベンチマーク実験を行う。
我々の研究は、高度なRAGシステムにおける信頼性と正確な推論を解き明かすためには、明確なギャップ分析による構造化されたエビデンス駆動の洗練プロセスが不可欠であることを示す。
論文 参考訳(メタデータ) (2025-10-25T15:59:33Z) - EviNote-RAG: Enhancing RAG Models via Answer-Supportive Evidence Notes [39.61443457073034]
EviNote-RAGは検索ノート・アンサーのワークフローに従うフレームワークである。
生の外部情報を直接推論する代わりに、モデルが最初にサポート・エビデンス・ノートを生成する。
EviNote-RAGは最先端のパフォーマンスを実現し、回答の正確性、トレーニングの安定性、堅牢性、効率性を向上する。
論文 参考訳(メタデータ) (2025-08-31T14:44:45Z) - ComposeRAG: A Modular and Composable RAG for Corpus-Grounded Multi-Hop Question Answering [42.238086712267396]
ComposeRAGは、RAGパイプラインをアトミックで構成可能なモジュールに分解する、新しいモジュラー抽象化である。
精度と接地忠実性の両方において、一貫して強いベースラインを上回ります。
検証ファーストの設計は、低品質の検索設定において、未解決の回答を10%以上削減する。
論文 参考訳(メタデータ) (2025-05-30T21:10:30Z) - Faithfulness-Aware Uncertainty Quantification for Fact-Checking the Output of Retrieval Augmented Generation [108.13261761812517]
本稿では,RAG出力における幻覚検出の新しい手法であるFRANQ(Fithfulness-based Retrieval Augmented Uncertainty Quantification)を紹介する。
本稿では,事実性と忠実性の両方に注釈を付したQAデータセットを提案する。
論文 参考訳(メタデータ) (2025-05-27T11:56:59Z) - DO-RAG: A Domain-Specific QA Framework Using Knowledge Graph-Enhanced Retrieval-Augmented Generation [4.113142669523488]
ドメイン固有のQAシステムは、生成頻度を必要とするが、構造化専門家の知識に基づく高い事実精度を必要とする。
本稿では,マルチレベル知識グラフ構築と意味ベクトル検索を統合した,スケーラブルでカスタマイズ可能なハイブリッドQAフレームワークであるDO-RAGを提案する。
論文 参考訳(メタデータ) (2025-05-17T06:40:17Z) - Unanswerability Evaluation for Retrieval Augmented Generation [74.3022365715597]
UAEval4RAGは、RAGシステムが解答不能なクエリを効果的に処理できるかどうかを評価するために設計されたフレームワークである。
我々は、6つの未解決カテゴリを持つ分類を定義し、UAEval4RAGは、多様で挑戦的なクエリを自動的に合成する。
論文 参考訳(メタデータ) (2024-12-16T19:11:55Z) - SFR-RAG: Towards Contextually Faithful LLMs [57.666165819196486]
Retrieval Augmented Generation (RAG) は、外部コンテキスト情報を大言語モデル(LLM)と統合し、事実の精度と妥当性を高めるパラダイムである。
SFR-RAG(SFR-RAG)について述べる。
また、複数の人気かつ多様なRAGベンチマークをコンパイルする新しい評価フレームワークであるConBenchについても紹介する。
論文 参考訳(メタデータ) (2024-09-16T01:08:18Z) - HiQA: A Hierarchical Contextual Augmentation RAG for Multi-Documents QA [13.000411428297813]
コンテンツにカスケードメタデータと複数ルート検索機構を統合した,高度な多文書質問応答(MDQA)フレームワークであるHiQAを提案する。
また、MDQAの評価と研究を行うMasQAというベンチマークもリリースしました。
論文 参考訳(メタデータ) (2024-02-01T02:24:15Z) - Better Retrieval May Not Lead to Better Question Answering [59.1892787017522]
システムの性能を改善するための一般的なアプローチは、取得したコンテキストの品質をIRステージから改善することである。
マルチホップ推論を必要とするオープンドメインのQAデータセットであるStrategyQAでは、この一般的なアプローチは驚くほど非効率である。
論文 参考訳(メタデータ) (2022-05-07T16:59:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。