論文の概要: Multimodal Bandits: Regret Lower Bounds and Optimal Algorithms
- arxiv url: http://arxiv.org/abs/2510.25811v1
- Date: Wed, 29 Oct 2025 12:32:07 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-31 16:05:09.506562
- Title: Multimodal Bandits: Regret Lower Bounds and Optimal Algorithms
- Title(参考訳): マルチモーダル帯域:レギュレット下界と最適アルゴリズム
- Authors: William Réveillard, Richard Combes,
- Abstract要約: 我々は、期待される報酬関数が最大 m モードでマルチモーダルであるような i.d. 報酬のマルチアームバンディット問題を考える。
本稿では,Graves-Lai最適化問題の解法を提案する。
- 参考スコア(独自算出の注目度): 7.534196213324318
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We consider a stochastic multi-armed bandit problem with i.i.d. rewards where the expected reward function is multimodal with at most m modes. We propose the first known computationally tractable algorithm for computing the solution to the Graves-Lai optimization problem, which in turn enables the implementation of asymptotically optimal algorithms for this bandit problem. The code for the proposed algorithms is publicly available at https://github.com/wilrev/MultimodalBandits
- Abstract(参考訳): 我々は、期待される報酬関数が最大mモードでマルチモーダルである場合の確率的マルチアームバンディット問題を考える。
本稿では,Graves-Lai最適化問題に対する解を計算可能な最初の計算アルゴリズムを提案する。
提案されたアルゴリズムのコードはhttps://github.com/wilrev/MultimodalBanditsで公開されている。
関連論文リスト
- Fixed-Budget Real-Valued Combinatorial Pure Exploration of Multi-Armed
Bandit [65.268245109828]
このアルゴリズムは,アクションクラスのサイズが指数関数的に大きい場合でも,最良のアクションを識別できる最初のアルゴリズムである。
CSAアルゴリズムの誤差確率の上限は指数の対数係数までの下界と一致することを示す。
提案手法を従来手法と実験的に比較し,アルゴリズムの性能が向上したことを示す。
論文 参考訳(メタデータ) (2023-10-24T09:47:32Z) - Risk-Aware Algorithms for Combinatorial Semi-Bandits [7.716156977428555]
半帯域フィードバック下でのマルチアームバンディット問題について検討する。
本稿では,最悪の場合の報酬のみを考慮したリスク尺度であるCVaR(Conditional Value-at-Risk)の最大化の問題を検討する。
本稿では,バンディットのスーパーアームから得られる報酬のCVaRを最大化するアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-12-02T11:29:43Z) - Optimal Gradient-based Algorithms for Non-concave Bandit Optimization [76.57464214864756]
この研究は、未知の報酬関数が非可逆であるようなバンドイット問題の大群を考察する。
我々のアルゴリズムは、非常に一般化されたゼロ階最適化のパラダイムに基づいている。
標準的な楽観的アルゴリズムは次元因子によって準最適であることを示す。
論文 参考訳(メタデータ) (2021-07-09T16:04:24Z) - Upper Confidence Bounds for Combining Stochastic Bandits [52.10197476419621]
バンディットアルゴリズムを結合する簡単な手法を提案する。
私たちのアプローチは、個々のbanditアルゴリズムのそれぞれを、より高いレベルのn$-armed bandit問題のアームとして扱う"meta-ucb"手順に基づいています。
論文 参考訳(メタデータ) (2020-12-24T05:36:29Z) - Corralling Stochastic Bandit Algorithms [54.10645564702416]
相関アルゴリズムの後悔は、最も報酬の高い腕を含む最高のアルゴリズムの後悔よりも悪くはないことを示す。
最高報酬と他の報酬の差は、最高報酬と他の報酬の差に依存することを示す。
論文 参考訳(メタデータ) (2020-06-16T15:33:12Z) - Model Selection in Contextual Stochastic Bandit Problems [51.94632035240787]
基本アルゴリズムを選択できるメタアルゴリズムを開発した。
基本アルゴリズムの1つが$O(sqrtT)$後悔している場合でも、一般的には$Omega(sqrtT)$後悔よりも良いものを得ることはできません。
論文 参考訳(メタデータ) (2020-03-03T18:46:34Z) - Bandit algorithms to emulate human decision making using probabilistic
distortions [20.422725678982726]
報奨分布に歪んだ確率を持つ2つの多重武装バンディット問題を定式化する。
以上のような後悔の最小化の問題と、マルチアームバンディットのための最高の腕識別フレームワークについて考察する。
論文 参考訳(メタデータ) (2016-11-30T17:37:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。